login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A118183
Column 0 of the matrix inverse of triangle A118180.
5
1, -1, 2, -10, 134, -4942, 505682, -142838074, 108933186230, -210663798566302, 812745803173573538, 6022271614633142122646, -2489044042602910169970590746, 996768343710992528631250678460690, -928936693384587466168289179772677376782
OFFSET
0,3
COMMENTS
The entire matrix inverse of triangle A118180 is determined by column 0 (this sequence): [A118180^-1](n,k) = a(n-k)*(3^k)^(n-k) for n>=k>=0. Any g.f. of the form: Sum_{k>=0} b(k)*x^k may be expressed as: Sum_{n>=0} c(n)*x^n/(1-3^n*x) by applying the inverse transformation: c(n) = Sum_{k=0..n} a(n-k)*b(k)*(3^k)^(n-k).
LINKS
FORMULA
G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1-3^n*x).
0^n = Sum_{k=0..n} a(k)*(3^k)^(n-k) for n>=0.
a(n) = (-1)*Sum_{j=0..n-1} 3^(j*(n-j))*a(j) with a(0) = 1 and a(1) = -1. - G. C. Greubel, Jun 29 2021
EXAMPLE
Recurrence at n=4:
0 = a(0)*(3^0)^4 +a(1)*(3^1)^3 +a(2)*(3^2)^2 +a(3)*(3^3)^1 +a(4)*(3^4)^0
= 1*(3^0) - 1*(3^3) + 2*(3^4) - 10*(3^3) + 134*(3^0).
The g.f. is illustrated by:
1 = 1/(1-x) -1*x/(1-3*x) +2*x^2/(1-9*x) -10*x^3/(1-27*x) +134*x^4/(1-81*x)
- 4942*x^5/(1-243*x) +505682*x^6/(1-729*x) -142838074*x^7/(1-2187*x) +...
MATHEMATICA
a[n_]:= a[n]= If[n<2, (-1)^n, -Sum[3^(j*(n-j))*a[j], {j, 0, n-1}]];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jun 29 2021 *)
PROG
(PARI) {a(n)=local(T=matrix(n+1, n+1, r, c, if(r>=c, (3^(c-1))^(r-c)))); return((T^-1)[n+1, 1])}
(Sage)
@CachedFunction
def a(n): return (-1)^n if (n<2) else -sum(3^(j*(n-j))*a(j) for j in (0..n-1))
[a(n) for n in (0..30)] # G. C. Greubel, Jun 29 2021
CROSSREFS
Cf. A118180.
Sequence in context: A355463 A378072 A336537 * A134051 A075199 A134981
KEYWORD
sign
AUTHOR
Paul D. Hanna, Apr 15 2006
STATUS
approved