The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117719 a(2n) = A001653(n) (Numbers n such that 2*n^2 - 1 is a square), a(2n+1) = A038725(n+1). 1
 1, 2, 5, 11, 29, 64, 169, 373, 985, 2174, 5741, 12671, 33461, 73852, 195025, 430441, 1136689, 2508794, 6625109, 14622323, 38613965, 85225144, 225058681, 496728541, 1311738121, 2895146102, 7645370045, 16874148071, 44560482149 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (0,6,0,-1). FORMULA G.f.: (1+2*x-x^2-x^3)/((1-2*x-x^2)*(1+2*x-x^2)). a(n) = (1/4)*( 3*P(n+1) + 2*P(n) + (-1)^n*P(n-1) ), where P(n) = A000129(n). - G. C. Greubel, Jul 23 2023 MATHEMATICA LinearRecurrence[{0, 6, 0, -1}, {1, 2, 5, 11}, 40] (* G. C. Greubel, Jul 23 2023 *) PROG (Magma) I:= [1, 2, 5, 11]; [n le 4 select I[n] else 6*Self(n-2) -Self(n-4): n in [1..40]]; // G. C. Greubel, Jul 23 2023 (SageMath) A000129=BinaryRecurrenceSequence(2, 1, 0, 1) def A117719(n): return (3*A000129(n+1) +2*A000129(n) +(-1)^n*A000129(n-1))/4 [A117719(n) for n in range(41)] # G. C. Greubel, Jul 23 2023 CROSSREFS Cf. A000129, A001653, A038725. Sequence in context: A040998 A215939 A309857 * A355516 A359661 A316769 Adjacent sequences: A117716 A117717 A117718 * A117720 A117721 A117722 KEYWORD nonn,easy AUTHOR Creighton Dement, Apr 13 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 03:48 EDT 2024. Contains 372921 sequences. (Running on oeis4.)