login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117525
Total sum of parts of multiplicity 2 in all partitions of n.
3
0, 0, 1, 0, 3, 3, 7, 9, 20, 22, 44, 56, 90, 119, 186, 236, 355, 461, 651, 848, 1177, 1506, 2050, 2626, 3482, 4443, 5823, 7353, 9524, 11983, 15307, 19163, 24277, 30174, 37920, 46925, 58463, 72006, 89155, 109209, 134418, 163973, 200605, 243700, 296696, 358862
OFFSET
0,5
COMMENTS
For m > 0, column m of A222730 is asymptotic to sqrt(3) * (2*m+1) * exp(Pi*sqrt(2*n/3)) / (2 * m^2 * (m+1)^2 * Pi^2) ~ 6 * (2*m+1) * n * p(n) / (m^2 * (m+1)^2 * Pi^2), where p(n) is the partition function A000041(n). - Vaclav Kotesovec, May 29 2018
LINKS
FORMULA
G.f. for total sum of parts of multiplicity m in all partitions of n is (x^m/(1-x^m)^2-x^(m+1)/(1-x^(m+1))^2)/Product(1-x^i,i=1..infinity).
a(n) ~ 5 * sqrt(3) * exp(Pi*sqrt(2*n/3)) / (72 * Pi^2). - Vaclav Kotesovec, May 29 2018
EXAMPLE
a(5) = 3 because the partitions of 5 that have parts with multiplicity 2 are [3,1,1] and [2,2,1] and the sum of those parts is 1+2 = 3.
MAPLE
g:=(x^2/(1-x^2)^2-x^3/(1-x^3)^2)/Product(1-x^i, i=1..60): gser:=series(g, x=0, 55): seq(coeff(gser, x, n), n=0..50); # Emeric Deutsch, May 13 2006
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
add((l->`if`(j=2, [l[1], l[2]+l[1]*i], l))(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=0..50); # Alois P. Heinz, Feb 03 2013
MATHEMATICA
b[n_, p_] := b[n, p] = If[n == 0 && p == 0, {1, 0}, If[p == 0, Array[0&, n+2], Sum[Function[l, ReplacePart[l, m+2 -> p*l[[1]] + l[[m+2]]]][Join[b[n-p*m, p-1], Array[0&, p*m]]], {m, 0, n/p}]]]; a[n_] := b[n, n][[4]]; a[0] = a[1] = 0; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 24 2014, after Alois P. Heinz *)
CROSSREFS
Cf. A103628.
Column k=2 of A222730. - Alois P. Heinz, Mar 03 2013
Sequence in context: A185306 A320314 A056295 * A075149 A161618 A202873
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Apr 26 2006
EXTENSIONS
More terms from Emeric Deutsch, May 13 2006
STATUS
approved