login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A117322
a(n) = prime(n) modulo semiprime(n).
4
2, 3, 5, 7, 11, 13, 17, 19, 23, 3, 31, 3, 6, 5, 8, 7, 10, 10, 12, 14, 15, 17, 18, 20, 23, 24, 21, 22, 23, 26, 36, 38, 43, 44, 43, 40, 42, 45, 48, 52, 57, 58, 62, 60, 63, 58, 69, 80, 82, 83, 78, 81, 82, 90, 91, 94, 92, 93, 94, 96, 96, 99, 106, 109, 110, 112, 125, 128, 134, 135
OFFSET
1,1
LINKS
FORMULA
a(n) = A000040(n) modulo A001358(n).
EXAMPLE
a(1) = 2 mod 4 = 2.
a(2) = 3 mod 6 = 3.
a(3) = 5 mod 9 = 5.
a(4) = 7 mod 10 = 7.
a(5) = 11 mod 14 = 11.
MATHEMATICA
SemiPrimePi[n_] := Sum[PrimePi[n/Prime@i] - i + 1, {i, PrimePi@Sqrt@n}]; SemiPrime[n_] := Block[{e = Floor[Log[2, n] + 1], a, b}, a = 2^e; Do[b = 2^p; While[SemiPrimePi[a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ Mod[Prime@n, SemiPrime@n], {n, 70}] (* Robert G. Wilson v, May 01 2006 *)
Module[{nn=300, sprs}, sprs=Select[Range[nn], PrimeOmega[#]==2&]; Mod[ #[[1]], #[[2]]]&/@Thread[{Prime[Range[Length[sprs]]], sprs}]] (* Harvey P. Dale, Nov 21 2021 *)
CROSSREFS
Sequence in context: A151796 A113580 A242124 * A242123 A229787 A329147
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Mar 08 2006
STATUS
approved