

A117076


Prime numbers with more even digits than odd digits.


1



2, 223, 227, 229, 241, 263, 269, 281, 283, 401, 409, 421, 443, 449, 461, 463, 467, 487, 601, 607, 641, 643, 647, 661, 683, 809, 821, 823, 827, 829, 863, 881, 883, 887, 2003, 2027, 2029, 2063, 2069, 2081, 2083, 2087, 2089, 2203, 2207, 2221, 2243, 2267, 2269
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

If a prime number's even digits are to outnumber its odd digits, it may not have two digits (as its last digit must be odd.) Neither may it begin with an odd digit if it has three or four digits. The smallest member of this sequence to begin with an odd digit is 10007.


LINKS

Harvey P. Dale, Table of n, a(n) for n = 1..1000


EXAMPLE

64969 is a member of this sequence as it is a prime with 3 even and only two odd digits. The primes on either side of it  64951 and 64997  are both nonmembers.


MATHEMATICA

Select[Prime[Range[1000]], Sum[DigitCount[ # ][[2i  1]], {i, 1, 5}] < Sum[DigitCount[ # ][[2i]], {i, 1, 5}] &] (* Stefan Steinerberger, Apr 18 2006 *)
metoQ[n_]:=Module[{idn=IntegerDigits[n]}, Count[idn, _?EvenQ]>Count[idn, _?OddQ]]; Select[Prime[Range[350]], metoQ] (* Harvey P. Dale, Oct 10 2018 *)


CROSSREFS

Sequence in context: A307511 A293945 A078276 * A132936 A110715 A242835
Adjacent sequences: A117073 A117074 A117075 * A117077 A117078 A117079


KEYWORD

base,easy,nonn


AUTHOR

Andy Edwards, Apr 18 2006


EXTENSIONS

More terms from Stefan Steinerberger, Apr 18 2006


STATUS

approved



