login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A116902
Number of partitions of n into at least two parts such that the product of largest and smallest part exceeds n.
3
0, 0, 0, 0, 1, 2, 2, 3, 4, 6, 8, 10, 13, 16, 20, 23, 32, 36, 46, 55, 66, 78, 99, 108, 136, 160, 188, 216, 271, 296, 364, 415, 484, 559, 684, 725, 890, 1028, 1175, 1313, 1599, 1727, 2084, 2335, 2636, 3019, 3620, 3801, 4553, 5170, 5819, 6460, 7690, 8265, 9728, 10783
OFFSET
1,6
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..200
EXAMPLE
a(9)=4 since property holds for 4 partitions of 9: {7,2}, {6,3}, {5,4}, {5,2,2}.
MATHEMATICA
fun[n_]:=Select[IntegerPartitions[n], (Length[ # ]>1 && Last[ # ]First[ # ]>n)&]; Table[Length[fun[k]], {k, 40}]
(* second program: *)
A[n_] := Length@ Select[ IntegerPartitions@n, Length@# > 1 && Last@# First@# > n &]; Array[A, 56] (* Robert G. Wilson v, Apr 06 2006 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Giovanni Resta, Mar 14 2006
EXTENSIONS
More terms from Robert G. Wilson v, Apr 06 2006
STATUS
approved