OFFSET
1,4
FORMULA
G.f.=sum(x^i*sum(jx^j/(1-x^j), j=1..i-1)/product(1-x^q, q=1..i), i=1..infinity).
a(n) = Sum_{k>=0} k * A116687(n,k).
EXAMPLE
a(5)=9 because the partitions of 5 are [5],[4,(1)],[3,(2)],[3,(1),(1)],
[2,2,(1)],[2,(1),(1),(1)] and [1,1,1,1,1] and the sum of the parts (shown between parentheses) that are smaller than the largest part is 1+2+1+1+1+1+1+1=9.
MAPLE
f:=sum(x^i*sum(j*x^j/(1-x^j), j=1..i-1)/product(1-x^q, q=1..i), i=1..55): fser:=series(f, x=0, 50): seq(coeff(fser, x^n), n=1..47);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 23 2006
STATUS
approved