login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262466
Number of (n+1) X (2+1) 0..1 arrays with each row divisible by 3 and each column divisible by 5, read as a binary number with top and left being the most significant bits.
2
1, 3, 9, 17, 37, 107, 321, 865, 2449, 7299, 21897, 64625, 192277, 576299, 1728897, 5174977, 15507361, 46516227, 139548681, 418517201, 1255358341, 3766010603, 11298031809, 33892678177, 101675908657, 305027017347, 915081052041
OFFSET
1,2
COMMENTS
Column 2 of A262472.
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 4*a(n-2) + 4*a(n-3) + 8*a(n-4) - 44*a(n-5) + 44*a(n-6) - 44*a(n-7) + 33*a(n-8).
Empirical g.f.: x*(1 - x + x^2 - 11*x^3 - 15*x^4 + 11*x^5 - 11*x^6 + 33*x^7) / ((1 - x)*(1 - 3*x)*(1 + x^2)*(1 - 11*x^4)). - Colin Barker, Mar 20 2018
EXAMPLE
Some solutions for n=4:
..1..1..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....1..1..0
..1..1..0....1..1..0....1..1..0....1..1..0....0..0..0....0..1..1....1..1..0
..1..1..0....0..1..1....1..1..0....0..0..0....1..1..0....0..0..0....0..0..0
..1..1..0....1..1..0....1..1..0....1..1..0....0..0..0....0..1..1....0..0..0
..0..0..0....0..1..1....1..1..0....0..0..0....1..1..0....0..0..0....1..1..0
CROSSREFS
Cf. A262472.
Sequence in context: A116688 A293423 A011755 * A128301 A348382 A176148
KEYWORD
nonn
AUTHOR
R. H. Hardin, Sep 23 2015
STATUS
approved