login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116020
Numbers n such that sigma(n) - phi(n) is a repdigit greater than 2.
1
4, 8, 9, 18, 25, 27, 28, 57, 62, 85, 123, 192, 218, 258, 259, 261, 322, 403, 632, 662, 693, 1127, 2195, 2218, 2321, 2658, 3548, 4577, 4763, 5597, 5603, 5921, 6662, 7421, 7697, 9617, 9683, 10721, 10877, 11537, 12317, 13323, 17243, 18659, 23363, 26483
OFFSET
1,1
COMMENTS
For every prime p sigma(p)-phi(p) is 2, so that case is trivial.
(I). If both numbers p=4*10^n+1 & q=(4*10^n-13)/9 are primes then m=p*q is in the sequence because sigma(m)-phi(m)=8*(10^(n+1)-1)/9 is a repdigit number. Conjecture: 123, 17243 & 1772443 are all such terms. - Farideh Firoozbakht, Aug 24 2006
(II). If p=(10^n-7)/3 is prime then m=2p is in the sequence because sigma(m)-phi(m)=2p+4=6*(10^n-1)/9 is a repdigit number. 62 is the smallest such terms. - Farideh Firoozbakht, Aug 24 2006
(III). If p=(4*10^n-31)/9 is prime then m=3p is in the sequence because sigma(m)-phi(m)=2p+6=8*(10^n-1)/9 is a repdigit number. 123 is the smallest such terms. - Farideh Firoozbakht, Aug 24 2006
(IV). If p=(8*10^n-17)/9 is a prime then both numbers 4p & 46p are in the sequence because sigma(4p)-phi(4p)=5p+9=4*(10^(n+1)-1)/9 & sigma(46p)-phi(46p)=50p+94=4*(10^(n+2)-1)/9 are repdigit numbers. 28 & 322 are the smallest such terms. - Farideh Firoozbakht, Aug 24 2006
(V). If p=(4*10^n-13)/9 is a prime greater than 3 then m=6p is in the sequence because sigma(m)-phi(m)=10p+14=4*(10^(n+1)-1)/9 is a repdigit number. 258 is the smallest such terms. - Farideh Firoozbakht, Aug 24 2006
(VI). If p=(8*10^(2n+1)-179)/99 is prime then m=8p is in the sequence because sigma(m)-phi(m)=11p+19=8*(10^(2n+1)-1)/9 is a repdigit number. 632 is the smallest such terms. - Farideh Firoozbakht, Aug 24 2006
(VII). If p=(10^(3n+1)-37)/27 is prime then m=12p is in the sequence because sigma(m)-phi(m)=24p+32=8*(10^(3n+1)-1)/9 is a repdigit number. 4444444428 is the smallest such terms. - Farideh Firoozbakht, Aug 24 2006
EXAMPLE
sigma(662) - phi(662) = 666.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Giovanni Resta, Feb 13 2006
STATUS
approved