login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A116017
Numbers n such that n + sigma(n) is a repdigit.
7
1, 2, 3, 4, 5, 9, 34, 141, 198, 277, 297, 375, 499, 1420, 2651, 2777, 3554, 4999, 19050, 28660, 29128, 49999, 131061, 506311, 3844863, 3852517, 4761903, 4999999, 22222218, 37560831, 133878933, 506767303, 872011214, 1381799253, 1427435733, 2777777777, 3018915632, 3555555554
OFFSET
1,2
COMMENTS
From Farideh Firoozbakht, Aug 17 2006: (Start)
(1) If p=(10^(3n+2)-19)/27 is a prime greater than 3 then m=6p is in the sequence because m+sigma(m)=6*(10^(3n+2)-1)/9 (the proof is easy), so m+sigma(m) is a repdigit number. The smallest such terms is 22222218, the next such term is 6*(10^(3*430+2)-1)/9=222...218 which has 1292 digits.
(2) If p=5*10^n-1 is prime then p is in the sequence because p+sigma(p)=10^(n+1)-1, so p+sigma(p) is a repdigit number. 499, 49999, 4999999,... are such terms.
(3) If p=(25*10^(n-1)-7)/9 is prime then p is in the sequence because p+sigma(p)=5*(10^n-1)/9, so p+sigma(p) is a repdigit number. 2, 277, 2777, 2777777777, ... are such terms.
(4) If p=(16*10^(n-1)-7)/9 is prime then m=2p is in the sequence because m+sigma(m)=8*(10^n-1) /9, so m+sigma(m) is a repdigit number. 34, 3554, 3555555554, ... are such terms. (End)
a(46) > 10^11. - Hiroaki Yamanouchi, Aug 26 2014
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..51 (terms < 10^13, first 45 terms from Hiroaki Yamanouchi)
EXAMPLE
22222218 + sigma(22222218) = 66666666.
MATHEMATICA
Do[If[Length[Union[IntegerDigits[n + DivisorSigma[1, n]]]]==1, Print[n]], {n, 60000000}] (* Farideh Firoozbakht, Aug 17 2006 *)
PROG
(PARI)
for(n=1, 10^7, d=digits(sigma(n)+n); c=0; for(i=1, #d-1, if(d[i]!=d[i+1], c++; break)); if(c==0, print1(n, ", "))) \\ Derek Orr, Aug 01 2014
(Python)
from sympy import divisors
A116017 = [n for n in range(1, 10**5) if len(set(str(n+sum(divisors(n))))) == 1] # Chai Wah Wu, Aug 11 2014
CROSSREFS
Sequence in context: A177064 A092233 A115895 * A182060 A067033 A067034
KEYWORD
nonn,base
AUTHOR
Giovanni Resta, Feb 13 2006
EXTENSIONS
More terms from Farideh Firoozbakht, Aug 17 2006, Dec 19 2007
a(36)-a(37) from Donovan Johnson, Feb 17 2013
a(38) from Farideh Firoozbakht, Aug 01 2014
STATUS
approved