login
A116030
sigma(n) - phi(n) is a palindrome greater than 2.
2
4, 8, 9, 18, 25, 27, 28, 57, 62, 72, 85, 123, 128, 176, 184, 189, 192, 218, 220, 234, 243, 246, 252, 256, 258, 259, 261, 278, 282, 306, 309, 316, 322, 332, 338, 339, 356, 375, 380, 388, 399, 403, 490, 495, 505, 512, 518, 544, 590, 597, 622, 632, 655, 662
OFFSET
1,1
COMMENTS
When n is prime sigma(n)-phi(n) is 2, so that case is trivial.
LINKS
EXAMPLE
sigma(399) - phi(399) = 424.
MATHEMATICA
pg2Q[n_]:=With[{c=DivisorSigma[1, n]-EulerPhi[n]}, PalindromeQ[c]&&c>2]; Select[ Range[700], pg2Q] (* Harvey P. Dale, Jan 16 2023 *)
PROG
(Magma) [n: n in [1..1000] | Intseq(d) eq Reverse(Intseq(d)) and d gt 2 where d is DivisorSigma(1, n)-EulerPhi(n)]; // Bruno Berselli, Sep 09 2015
CROSSREFS
Sequence in context: A257009 A071592 A089765 * A116020 A354869 A213015
KEYWORD
nonn,base
AUTHOR
Giovanni Resta, Feb 13 2006
STATUS
approved