

A115868


Invariants for a hidden action of S_(n+1) on Cayley trees with n vertices.


0



1, 1, 1, 1, 2, 2, 4, 6, 11, 18, 39, 70, 153, 321, 721, 1612, 3792, 8896, 21498, 52230, 128994, 320786, 806582, 2040912, 5205311, 13352470, 34460430, 89384609
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,5


COMMENTS

This is the multiplicity of the trivial module in a sequence of modules of dimension (n1)^(n3) over the symmetric groups S_n. The restriction of these modules to S_(n1) is given by the action on trees.


LINKS

Table of n, a(n) for n=2..29.


FORMULA

No simple formula known, only a complicated sum over partitions


EXAMPLE

M[6]=s[2, 1, 1, 1, 1] + 3 s[2, 2, 2] + 2 s[3, 1, 1, 1] + 2 s[3, 2, 1] + s[4, 1, 1] + 4 s[4, 2] + s[5, 1] + 2 s[6] as a sum of Schur functions hence a[6]=2.


CROSSREFS

Cf. A000055 and A000272.
Sequence in context: A201542 A000672 A129860 * A103299 A278246 A195204
Adjacent sequences: A115865 A115866 A115867 * A115869 A115870 A115871


KEYWORD

nonn,more


AUTHOR

F. Chapoton, Mar 14 2006


EXTENSIONS

Five more terms added by F. Chapoton, Mar 08 2020


STATUS

approved



