login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115556
Numbers whose square is the concatenation of two numbers 9*m and m.
30
12857142857142857142857142857142857143, 25714285714285714285714285714285714286, 117391304347826086956521739130434782608695652173913043478261
OFFSET
1,1
COMMENTS
a(4)=156521739130434782608695652173913043478260869565217391304348.
From Robert Israel, Aug 24 2023: (Start)
If 9 * 10^d + 1 = a^2 * b with a > 1, then a * b * c is a term if a^2/(90 + 10^(1-d)) < c^2 < a^2/(9 + 10^(-d)). For example, 9 * 10^d + 1 is divisible by 7^2 for d == 37 (mod 42), and then (9 * 10^d + 1)/7 and 2*(9 * 10^d + 1)/7 are terms. In particular, the sequence is infinite. (End)
LINKS
MAPLE
F:= proc(d) local R, F, t, b, r, q, s, m0, x0, k;
R:= NULL;
F:= ifactors(9*10^d+1)[2];
b:= mul(t[1]^floor(t[2]/2), t=F);
for r in numtheory:-divisors(b) do
x0:= (9*10^d+1)/r;
m0:= x0/r;
for k from ceil(sqrt(10^(d-1)/m0)) to floor(sqrt(10^d/m0)) do
R:= R, x0*k;
od
od;
R
end proc:
sort(map(F, [$1..90])); # Robert Israel, Aug 24 2023
CROSSREFS
KEYWORD
nonn,base,bref
AUTHOR
Giovanni Resta, Jan 25 2006
EXTENSIONS
Definition modified by Georg Fischer, Jul 26 2019
STATUS
approved