|
|
A106497
|
|
Numbers whose square is the concatenation of two identical numbers, i.e., of the form NN.
|
|
48
|
|
|
36363636364, 45454545455, 54545454546, 63636363637, 72727272728, 81818181819, 90909090910, 428571428571428571429, 571428571428571428572, 714285714285714285715, 857142857142857142858
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For the corresponding numbers N see A102567.
Numbers of the form j*(10^d + 1)/k where 10^d + 1 == 0 (mod k^2) and k/sqrt(10) < j < k. - David W. Wilson, Nov 09 2006
|
|
REFERENCES
|
Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
R. Ondrejka, Problem 1130: Biperiod Squares, Journal of Recreational Mathematics, Vol. 14:4 (1981-82), 299. Solution by F. H. Kierstead, Jr., JRM, Vol. 15:4 (1982-83), 311-312.
|
|
LINKS
|
|
|
EXAMPLE
|
63636363637 is in the sequence because 63636363637^2 = 4049586776940495867769 is 40495867769 written twice.
|
|
PROG
|
(Python)
from itertools import count, islice
from sympy import sqrt_mod
def A106497_gen(): # generator of terms
for j in count(0):
b = 10**j
a = b*10+1
for k in sorted(sqrt_mod(0, a, all_roots=True)):
if a*b <= k**2 < a*(a-1):
yield k
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|