login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115374
Least prime p such that sigma(x)=sigma(p) has exactly n solutions.
2
2, 11, 23, 179, 71, 167, 239, 431, 359, 503, 3167, 1511, 4679, 2687, 719, 9719, 4799, 16319, 5471, 10559, 1439, 26399, 24623, 3359, 15359, 3023, 7559, 6719, 2879, 26783, 10799, 13103, 5039, 6047, 45863, 29759, 61559, 18719, 27647, 99839, 22679, 68543
OFFSET
1,1
COMMENTS
For 1<n<258, we have a(n)=11 (mod 12). Is this true for all n>1? It also appears that for each n there are an infinite number of primes p such that sigma(x)=sigma(p) has exactly n solutions.
LINKS
MATHEMATICA
s=DivisorSigma[1, Range[100000]]; t=Table[Length[Position[s, Prime[n]+1]], {n, PrimePi[Length[s]]}]; u=Union[t]; nLast=First[Complement[Range[u[[ -1]]], u]]-1; Flatten[Table[Prime[Position[t, n, 1, 1]], {n, nLast}]]
PROG
(PARI) sigv(n) = select(i->sigma(i) == n, vector(n, i, i));
a(n) = {p = 2; while (#(sigv(p+1))! = n, p = nextprime(p+1)); p; } \\ Michel Marcus, May 01 2014
CROSSREFS
Cf. A007368 (least k such that sigma(x)=k has n solutions), A066075 (number of solutions to sigma(x)=sigma(prime(n))).
Sequence in context: A342185 A217309 A378697 * A078699 A291679 A239741
KEYWORD
nonn
AUTHOR
T. D. Noe, Jan 21 2006
STATUS
approved