login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A115375 <h[d,d],s[d,d]*s[d,d]*s[d,d]> where h[d,d] is a homogeneous symmetric function, s[d,d] is a Schur function indexed by two parts, * represents the Kronecker product and <, > is the standard scalar product on symmetric functions. 2
1, 1, 4, 5, 12, 15, 30, 37, 65, 80, 128, 156, 234, 282, 402, 480, 657, 777, 1030, 1207, 1558, 1811, 2286, 2637, 3267, 3742, 4562, 5192, 6242, 7062, 8388, 9438, 11091, 12417, 14454, 16107, 18592, 20629, 23632, 26117, 29715, 32718, 36996, 40594 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

REFERENCES

M. W. Hero and J. F. Willenbring, Stable Hilbert series as related to the measurement of quantum entanglement, Discrete Math., 309 (2010), 6508-6514.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (1,4,-3,-7,2,8,2,-7,-3,4,1,-1).

FORMULA

G.f.: (1 - x^2 + x^4) / ((1 - x)^6*(1 + x)^4*(1 + x + x^2)).

a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 7*a(n-4) + 2*a(n-5) + 8*a(n-6) + 2*a(n-7) - 7*a(n-8) - 3*a(n-9) + 4*a(n-10) + a(n-11) - a(n-12) for n>11. - Colin Barker, May 10 2019

PROG

(PARI) Vec((1 - x^2 + x^4) / ((1 - x)^6*(1 + x)^4*(1 + x + x^2)) + O(x^40)) \\ Colin Barker, May 10 2019

CROSSREFS

Cf. A115376, A082424, A008763, A082437.

Sequence in context: A130011 A050022 A137619 * A212114 A269227 A103650

Adjacent sequences:  A115372 A115373 A115374 * A115376 A115377 A115378

KEYWORD

nonn,easy

AUTHOR

Mike Zabrocki, Jan 21 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 6 15:41 EDT 2020. Contains 333276 sequences. (Running on oeis4.)