login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078699
Primes p such that p^2-1 is a triangular number.
2
2, 11, 23, 373, 12671, 901273, 19472752251611, 53072032161200090602953513048447623, 5027153581127740201460650182713355379768873, 11604855412241025458500993236724193227031777965785837784548351709747881343573
OFFSET
1,1
COMMENTS
Equivalently, primes in A006452.
The sequence of corresponding triangular numbers begins 3, 120, 528, 139128, 160554240, 812293020528, 379188080252621270252095320, ... [Shreevatsa R, Jul 12 2013]
LINKS
MATHEMATICA
a[n_] := a[n]=If[n<4, {1, 2, 4, 11}[[n+1]], 6a[n-2]-a[n-4]]; Select[a/@Range[200], ProvablePrimeQ] (* First do <<NumberTheory`PrimeQ` *)
PROG
(PARI) default(primelimit, 10^7) istri(n) = t=floor(sqrt(2*n)); if(2*n==t*(t+1), 1, 0) forprime(p=2, 5*10^6, if(istri(p^2-1), print1(p" ")))
(PARI) istriang(n)=issquare(8*n+1);
forprime(p=2, 10^10, if(istriang(p^2-1), print1(p, ", ")));
\\ Joerg Arndt, Jul 15 2013
(PARI) /* much more efficient: */
N=1166; f=( 1+x-4*x^2-2*x^3 ) / ( (x^2+2*x-1)*(x^2-2*x-1) )+O(x^N);
for(n=0, N-1, my(c=polcoeff(f, n)); if(isprime(c), print1(c, ", ")));
\\ Joerg Arndt, Jul 15 2013
CROSSREFS
Sequence in context: A217309 A378697 A115374 * A291679 A239741 A042347
KEYWORD
nonn
AUTHOR
Jason Earls, Dec 18 2002
EXTENSIONS
Edited by Dean Hickerson, Dec 19 2002
STATUS
approved