login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115092
The number of m such that prime(n) divides m!+1.
5
1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 1, 2, 2, 1, 4, 4, 3, 7, 1, 4, 4, 1, 1, 1, 3, 1, 2, 1, 2, 2, 4, 2, 2, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1, 5, 1, 2, 2, 1, 3, 3, 2, 3, 3, 2, 1, 1, 5, 4, 2, 1, 3, 1, 1, 2, 1, 1, 2, 2, 1, 3, 4, 3, 4, 6, 1, 3, 1, 3, 1, 1, 2, 2, 1, 2, 3, 3, 4, 1, 2, 2, 4, 1, 3, 2, 1, 1, 2, 4, 3, 4
OFFSET
1,4
COMMENTS
By Wilson's theorem, we know that for each prime p there is at least one m such that p divides m!+1. The largest such m is p-1. Sequence A073944 lists the smallest m for each prime.
EXAMPLE
a(20)=7 because 71, the 20th prime, divides m!+1 for the seven values m=7,9,19,51,61,63,70. Interesting, note that 7+63=9+61=19+51=70.
MATHEMATICA
Table[p=Prime[i]; cnt=0; f=1; Do[f=Mod[f*m, p]; If[f+1==p, cnt++ ], {m, p-1}]; cnt, {i, 150}]
PROG
(PARI) a(n, p=prime(n))=my(t=Mod(1, p)); sum(k=1, p-1, t*=k; t==-1) \\ Charles R Greathouse IV, May 15 2015
CROSSREFS
Sequence in context: A352620 A103343 A085263 * A172281 A304945 A176298
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 01 2006
STATUS
approved