login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172281
Triangle T(n, k, q) = ceiling( binomial(n, k)*(1+q)/( (1+q)^2 + (k - floor(n/2))^2 ) ), with q = 1, read by rows.
1
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 3, 2, 1, 1, 2, 5, 4, 2, 1, 1, 2, 6, 10, 6, 2, 1, 1, 2, 9, 18, 14, 6, 2, 1, 1, 2, 7, 23, 35, 23, 7, 2, 1, 1, 2, 9, 34, 63, 51, 21, 6, 1, 1, 1, 1, 7, 30, 84, 126, 84, 30, 7, 1, 1
OFFSET
0,8
FORMULA
T(n, k, q) = ceiling( binomial(n, k)*(1+q)/( (1+q)^2 + (k - floor(n/2))^2 ) ), with q = 1.
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 1, 1;
1, 2, 2, 1;
1, 2, 3, 2, 1;
1, 2, 5, 4, 2, 1;
1, 2, 6, 10, 6, 2, 1;
1, 2, 9, 18, 14, 6, 2, 1;
1, 2, 7, 23, 35, 23, 7, 2, 1;
1, 2, 9, 34, 63, 51, 21, 6, 1, 1;
1, 1, 7, 30, 84, 126, 84, 30, 7, 1, 1;
MATHEMATICA
T[n_, k_, q_]:= Ceiling[Binomial[n, k]*(q+1)/((1+q)^2 + (k - Floor[n/2])^2)];
Table[T[n, k, 1], {n, 0, 5}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, May 07 2021 *)
PROG
(Sage)
def T(n, k, q): return ceil( binomial(n, k)*(1+q)/( (1+q)^2 + (k - n//2)^2 ) )
flatten([[T(n, k, 1) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, May 07 2021
CROSSREFS
Cf. A172279 (q=0), this sequence (q=1).
Sequence in context: A103343 A085263 A115092 * A304945 A176298 A259575
KEYWORD
nonn,tabl,less,easy
AUTHOR
Roger L. Bagula, Jan 30 2010
EXTENSIONS
Edited by G. C. Greubel, May 07 2021
STATUS
approved