login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A115076
Number of 2 X 2 symmetric matrices over Z(n) having determinant 1.
2
1, 4, 6, 12, 30, 24, 42, 48, 54, 120, 110, 72, 182, 168, 180, 192, 306, 216, 342, 360, 252, 440, 506, 288, 750, 728, 486, 504, 870, 720, 930, 768, 660, 1224, 1260, 648, 1406, 1368, 1092, 1440, 1722, 1008, 1806, 1320, 1620, 2024, 2162, 1152, 2058, 3000
OFFSET
1,2
COMMENTS
a(1)=1 because the matrix of all zeros has determinant 0, but 0=1 (mod 1).
LINKS
FORMULA
Multiplicative with a(2^1) = 4, a(2^e) = 3*2^(2*e-2) for e > 1, a(p^e) = (p+1)*p^(2*e-1) for p mod 4 == 1, a(p^e) = (p-1)*p^(2*e-1) for p mod 4 == 3. - Andrew Howroyd, Jul 04 2018
Sum_{k=1..n} a(k) ~ c * n^3, where c = (5/(2*Pi^2)) * A175647 * A243380 = 0.282098596071... . - Amiram Eldar, Aug 28 2023
MATHEMATICA
Table[cnt=0; Do[m={{a, b}, {b, c}}; If[Det[m, Modulus->n]==1, cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}]; cnt, {n, 50}]
f[p_, e_] := If[Mod[p, 4] == 1, (p+1)*p^(2*e-1), (p-1)*p^(2*e-1)]; f[2, 1] = 4; f[2, e_] := 3*2^(2*e-2); a[n_] := Times @@ f @@@ FactorInteger[n]; a[1] = 1; Array[a, 100] (* Amiram Eldar, Aug 28 2023 *)
PROG
(PARI) a(n)={my(v=vector(n)); for(i=0, n-1, for(j=0, n-1, v[i*j%n+1]++)); sum(i=0, n-1, v[(i^2+1)%n+1])} \\ Andrew Howroyd, Jul 04 2018
(PARI) a(n)={my(f=factor(n)); prod(i=1, #f~, my(p=f[i, 1], e=f[i, 2]); p^(2*e-1)*if(p==2, if(e==1, 2, 3/2), if(p%4==1, p+1, p-1)))} \\ Andrew Howroyd, Jul 04 2018
CROSSREFS
Cf. A000056 (order of the group SL(2, Z_n)), A175647, A243380.
Sequence in context: A215177 A294489 A344995 * A126259 A068570 A092320
KEYWORD
mult,nonn,easy
AUTHOR
T. D. Noe, Jan 12 2006
STATUS
approved