login
A115077
Number of 2 X 2 symmetric matrices over Z(n) having nonzero determinant.
2
0, 4, 18, 44, 100, 180, 294, 432, 630, 900, 1210, 1548, 2028, 2548, 3150, 3744, 4624, 5436, 6498, 7500, 8820, 10164, 11638, 13104, 14900, 16900, 18792, 20972, 23548, 26100, 28830, 31360, 34848, 38148, 41650, 44676, 49284, 53428, 57798, 62000
OFFSET
1,2
FORMULA
a(n) = n^3 - A115075(n).
For squarefree n, a(n) = (n-1)*n^2.
MATHEMATICA
Table[cnt=0; Do[m={{a, b}, {b, c}}; If[Det[m, Modulus->n]>0, cnt++ ], {a, 0, n-1}, {b, 0, n-1}, {c, 0, n-1}]; cnt, {n, 50}]
f[p_, e_] := p^e*(p^e + p^(e-1) - p^(Ceiling[e/2] - 1)); a[1] = 0; a[n_] := n^3 - Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 31 2023 *)
PROG
(PARI) a(n) = {my(f = factor(n), p, e); n^3 - prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; p^e*(p^e + p^(e-1) - p^((e+1)\2 - 1))); } \\ Amiram Eldar, Oct 31 2023
CROSSREFS
Cf. A005353 (number of 2 X 2 matrices over Z(n) having nonzero determinant), A115075.
Sequence in context: A126283 A023618 A366985 * A278046 A258634 A280599
KEYWORD
nonn,easy
AUTHOR
T. D. Noe, Jan 12 2006
STATUS
approved