|
|
A114801
|
|
2-concatenation-free sequence starting (1,2).
|
|
1
|
|
|
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99, 100, 121, 123, 124, 125, 126, 127, 128, 129, 131, 132, 134, 135, 136, 137, 138, 139, 141, 142, 143, 145, 146, 147, 148, 149, 151, 152, 153, 154, 156, 157, 158
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Starting with the terms (1,2) this sequence consists of minimum increasing terms such that no term is the concatenation of any two previous distinct terms. The next consecutive number skipped after 121 is 122 = Concatenate(1, 22). This is the analog of a 2-Stöhr sequence with concatenation (base 10) substituting for addition. A033627 "0-additive sequence: not the sum of any previous pair" is another name for the 2-Stöhr sequence.
|
|
LINKS
|
|
|
FORMULA
|
a(0) = 1, a(1) = 2, for n>2: a(n) = least k > a(n-1) such that k is not an element of {Concatenate(a(i), a(j))} for any distinct a(i) <= a(n-1) and a(j) <= a(n-1).
|
|
MATHEMATICA
|
conc[x_, y_] := FromDigits@ Flatten@ IntegerDigits[{x, y}]; L = {1, 2}; cc = {12, 21}; Do[k = 1 + Max@L; While[MemberQ[cc, k], k++]; cc = Union[cc, conc[#, k] & /@ L, conc[k, #] & /@ L]; AppendTo[L, k]; , {65}]; L (* Giovanni Resta, Jun 15 2016 *)
|
|
PROG
|
(PARI) See Links section.
|
|
CROSSREFS
|
|
|
KEYWORD
|
base,easy,nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|