OFFSET
0,1
COMMENTS
I had noticed that the elliptical term: j=g2[n]^3/(g2[n]^2-27*g3[n]^2) was singular for a kind of polynomial with three real roots: (x+n)^2*(x-2*n) This table gives all zeros: Table[((4*a[[2*n + 1]])^3 - 27*(4*a[[2*n + 2]])^2)/(4*a[[2*n + 1]])^3, {n, 0, 49}]
Apparently pairs (a(2*n), a(2*n+1)) such that x^3 - a(2*n)*x + a(2*n+1) = (x-(2*n+2)) * (x+(n+1))^2. [Joerg Arndt, Mar 15 2013]
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,4,0,-6,0,4,0,-1).
FORMULA
w^2=4*z^3-g2[n]*z-g3[n] a(n) = {g2[n],g3[n]}/4
a(n) = (3*n^2+12*n+12)/4 for n even. a(n) = (n^3+3*n^2+3*n+1)/4 for n odd. G.f.: (2*x^5-3*x^4+8*x^3+2*x+3) / ((x-1)^4*(x+1)^4). - Colin Barker, Mar 15 2013
EXAMPLE
x^3-3*x-2
x^3-12*x-16
x^3-27*x-54
MATHEMATICA
a = Flatten[Table[Abs[Coefficient[Expand[(x + n)^2*(x - 2*n)], x, 1 - m]], {n, 1, 50}, {m, 0, 1}]]
CROSSREFS
KEYWORD
nonn,uned,easy
AUTHOR
Roger L. Bagula, Feb 18 2006
STATUS
approved