The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A136657 Unsigned member s=2 of a family of generalizations of the (signed) Lah triangle A008297. All numbers divided by 2. 6
 1, 3, 2, 12, 18, 4, 60, 150, 72, 8, 360, 1320, 1020, 240, 16, 2520, 12600, 13860, 5160, 720, 32, 20160, 131040, 191520, 99960, 21840, 2016, 64, 181440, 1481760, 2751840, 1882440, 571200, 81984, 5376, 128, 1814400, 18144000, 41489280, 35622720 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS In order to obtain the Lah triangle for s=+1 the sign of the s parameter in the Charalambides reference has been switched. For more information see entry A136656 and the Charalambides reference. REFERENCES Ch. A. Charalambides, Enumerative Combinatorics, Chapman & Hall/CRC, Boca Raton, Florida, 2002, ch. 8.4 p. 301 ff, with s -> -s. Table 8.3 for s=-2 and multiplied by(-1)^n, divided by 2. LINKS Table of n, a(n) for n=0..39. W. Lang, First ten rows and more. FORMULA a(n,k)=sum(((-1)^(k-r))*binomial(k,r)*fallfac(-2*r,n),r=0..k)/(2*k!), n>=k>=1. From the Charalambides reference Theorem 8.15, p. 306 for s=-2, divided by 2. EXAMPLE [1];[3,2];[12,18,4];[60,150,72,8];[360,1320,1020,240,16];... MATHEMATICA fallfac[n_, k_] := Pochhammer[n - k + 1, k]; a[n_, k_] := Sum[(-1)^(k - r)*Binomial[k, r]*fallfac[-2*r, n], {r, 0, k}]/(2*k!); Table[(-1)^n*a[n, k], {n, 0, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 09 2013 *) CROSSREFS Sequence in context: A114798 A167639 A113205 * A006774 A361865 A356857 Adjacent sequences: A136654 A136655 A136656 * A136658 A136659 A136660 KEYWORD easy,tabl,nonn AUTHOR Wolfdieter Lang, Feb 22 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 1 13:16 EST 2024. Contains 370433 sequences. (Running on oeis4.)