login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A114802 3-concatenation-free sequence starting (1,2). 0
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 20, 22, 30, 33, 40, 44, 50, 55, 60, 66, 70, 77, 80, 88, 90, 99, 100, 121, 131, 141, 151, 161, 171, 181, 191, 200, 212, 232, 242, 252, 262, 272, 282, 292, 300, 313, 323, 343, 353, 363, 373, 383, 393, 400, 414, 424, 434, 454 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Starting with the terms (1,2) this sequence consists of minimum increasing integer terms such that no term is the concatenation of any two or three previous distinct terms. The next consecutive numbers skipped after 121 are 122 = Concatenate(1,22) and 123 = Concatenate(1,2,3). This is the analog of a 3-Stöhr sequence with concatenation (base 10) substituting for addition. A026474 is a 3-Stöhr sequence.
LINKS
Eric Weisstein's World of Mathematics, Stöhr Sequence.
FORMULA
a(0) = 1, a(1) = 2, for n>2: a(n) = least k > a(n-1) such that k is not an element of {Concatenate[a(h),a(i),a(j)]} or {Concatenate[a(i),a(j)]} for any three distinct a(h), a(i), and a(j), where h, i, j < n.
MATHEMATICA
conc[w_] := Flatten[ (FromDigits /@ Flatten /@ IntegerDigits /@ (Permutations[#]) &) /@ Subsets[w, {2, 3}]]; up = 10^3; L = {1, 2, 3}; cc = conc[L]; Do[k = 1 + Max@L; While[MemberQ[cc, k], k++]; If[k > up, Break[]]; Do[cc = Union[cc, Select[ conc[{k, L[[i]], L[[j]]}], # <= up &]], {i, Length[L]}, {j, i - 1}]; AppendTo[L, k], {60}]; L (* Giovanni Resta, Jun 15 2016 *)
CROSSREFS
Sequence in context: A180482 A193460 A114801 * A055933 A188650 A132578
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Feb 18 2006
EXTENSIONS
Corrected and edited by Giovanni Resta, Jun 15 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 9 10:57 EDT 2023. Contains 363178 sequences. (Running on oeis4.)