login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114596
Triangle read by rows: T(n,k) is the number of hill-free Dyck paths of semilength n and having abscissa of first return equal to 2k (2<=k<=n). A hill in a Dyck path is a peak at level 1.
1
1, 0, 2, 1, 0, 5, 2, 2, 0, 14, 6, 4, 5, 0, 42, 18, 12, 10, 14, 0, 132, 57, 36, 30, 28, 42, 0, 429, 186, 114, 90, 84, 84, 132, 0, 1430, 622, 372, 285, 252, 252, 264, 429, 0, 4862, 2120, 1244, 930, 798, 756, 792, 858, 1430, 0, 16796, 7338, 4240, 3110, 2604, 2394, 2376, 2574, 2860, 4862, 0, 58786
OFFSET
2,3
COMMENTS
Row sums are the Fine numbers (A000957). Column 2 yield the Fine numbers (A000957).
LINKS
E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
FORMULA
T(n,n) = Catalan(n-1) (A000108).
Sum_{k=2..n} k*T(n,k) = 2*A014301(n).
T(n, k) = Catalan(k-1)*f(n-k), for 2<=k<=n, where Catalan(n) are the Catalan numbers (A000108) and f(n) = 3*Sum_{j=0..floor(n/2)} ( binomial(2n-2j, n) ) - binomial(2n+2, n+1) (the Fine numbers, A000957).
G.f.: (2*(1+x-t*x) +sqrt(1-4*x) -sqrt(1-4*t*x))/(1 +2*x +sqrt(1-4*x)) -1.
EXAMPLE
T(5,3)=2 because we have UUUDDD|UUDD and UUDUDD|UUDD, where U=(1,1), D=(1,-1) (first return is shown by a vertical bar).
Triangle begins:
1;
0, 2;
1, 0, 5;
2, 2, 0, 14;
6, 4, 5, 0, 42;
18, 12, 10, 14, 0, 132;
MAPLE
c:=n->binomial(2*n, n)/(n+1): f:=n->3*sum(binomial(2*n-2*j, n), j=0..floor(n/2))-binomial(2*n+2, n+1): for n from 2 to 12 do seq(c(k-1)*f(n-k), k=2..n) od; # yields sequence in triangular form
MATHEMATICA
f[n_]:= 3*Sum[Binomial[2*n-2*j, n], {j, 0, Floor[n/2]}] - Binomial[2*n+2, n +1]; Table[CatalanNumber[k-1]*f[n-k], {n, 2, 12}, {k, 2, n}] (* G. C. Greubel, Apr 06 2019 *)
PROG
(PARI) {f(n) = 3*sum(j=0, floor(n/2), binomial(2*n-2*j, n)) - binomial(2*n+2, n+1)};
for(n=2, 12, for(k=2, n, print1((binomial(2*(k-1), k)/(k-1))*f(n-k), ", "))) \\ G. C. Greubel, Apr 06 2019
(Sage)
@CachedFunction
def f(n):
return 3*sum(binomial(2*n-2*j, n) for j in (0..floor(n/2))) - binomial(2*n+2, n+1)
def T(n, k): return catalan_number(k-1)*f(n-k)
[[T(n, k) for k in (2..n)] for n in (2..12)] # G. C. Greubel, Apr 06 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Dec 12 2005
EXTENSIONS
Keyword tabf changed to tabl by Michel Marcus, Apr 09 2013
STATUS
approved