OFFSET
2,3
LINKS
G. C. Greubel, Rows n = 2..100 of triangle, flattened
E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
FORMULA
T(n,n) = Catalan(n-1) (A000108).
Sum_{k=2..n} k*T(n,k) = 2*A014301(n).
T(n, k) = Catalan(k-1)*f(n-k), for 2<=k<=n, where Catalan(n) are the Catalan numbers (A000108) and f(n) = 3*Sum_{j=0..floor(n/2)} ( binomial(2n-2j, n) ) - binomial(2n+2, n+1) (the Fine numbers, A000957).
G.f.: (2*(1+x-t*x) +sqrt(1-4*x) -sqrt(1-4*t*x))/(1 +2*x +sqrt(1-4*x)) -1.
EXAMPLE
T(5,3)=2 because we have UUUDDD|UUDD and UUDUDD|UUDD, where U=(1,1), D=(1,-1) (first return is shown by a vertical bar).
Triangle begins:
1;
0, 2;
1, 0, 5;
2, 2, 0, 14;
6, 4, 5, 0, 42;
18, 12, 10, 14, 0, 132;
MAPLE
c:=n->binomial(2*n, n)/(n+1): f:=n->3*sum(binomial(2*n-2*j, n), j=0..floor(n/2))-binomial(2*n+2, n+1): for n from 2 to 12 do seq(c(k-1)*f(n-k), k=2..n) od; # yields sequence in triangular form
MATHEMATICA
f[n_]:= 3*Sum[Binomial[2*n-2*j, n], {j, 0, Floor[n/2]}] - Binomial[2*n+2, n +1]; Table[CatalanNumber[k-1]*f[n-k], {n, 2, 12}, {k, 2, n}] (* G. C. Greubel, Apr 06 2019 *)
PROG
(PARI) {f(n) = 3*sum(j=0, floor(n/2), binomial(2*n-2*j, n)) - binomial(2*n+2, n+1)};
for(n=2, 12, for(k=2, n, print1((binomial(2*(k-1), k)/(k-1))*f(n-k), ", "))) \\ G. C. Greubel, Apr 06 2019
(Sage)
@CachedFunction
def f(n):
return 3*sum(binomial(2*n-2*j, n) for j in (0..floor(n/2))) - binomial(2*n+2, n+1)
def T(n, k): return catalan_number(k-1)*f(n-k)
[[T(n, k) for k in (2..n)] for n in (2..12)] # G. C. Greubel, Apr 06 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Dec 12 2005
EXTENSIONS
Keyword tabf changed to tabl by Michel Marcus, Apr 09 2013
STATUS
approved