login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A073583 Decimal expansion of 23/19. 0
1, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Eventually periodic with period 19-1 = 18 because 19 is a "long period" prime.

LINKS

Table of n, a(n) for n=1..105.

Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 0, 0, 0, 0, 0, -1, 1).

FORMULA

a(n) = (1/306)*{77*(n mod 18)-25*[(n+1) mod 18]-42*[(n+2) mod 18]+77*[(n+3) mod 18]-42*[(n+4) mod 18]+94*[(n+5) mod 18]-8*[(n+6) mod 18]-8*[(n+7) mod 18]-25*[(n+8) mod 18]-59*[(n+9) mod 18]+43*[(n+10) mod 18]+60*[(n+11) mod 18]-59*[(n+12) mod 18]+60*[(n+13) mod 18]-76*[(n+14) mod 18]+26*[(n+15) mod 18]+26*[(n+16) mod 18]+43*[(n+17) mod 18]}-3*[C(2*n,n) mod 2], with n>=0. - Paolo P. Lava, Feb 15 2008

Equals 1+100*A021479. [R. J. Mathar, Sep 23 2008]

EXAMPLE

1.2105263157894736842105263157894736842105263...

MATHEMATICA

RealDigits[23/19, 10, 120][[1]] (* Harvey P. Dale, Aug 24 2011 *)

Join[{1}, LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, -1, 1}, {2, 1, 0, 5, 2, 6, 3, 1, 5, 7}, 104]] (* Ray Chandler, Aug 27 2015 *)

CROSSREFS

Sequence in context: A114596 A083417 A021479 * A324162 A060136 A327358

Adjacent sequences:  A073580 A073581 A073582 * A073584 A073585 A073586

KEYWORD

nonn,cons,easy

AUTHOR

Sandeep Chellappen (sandeep.chellappen(AT)wipro.com), Aug 28 2002

EXTENSIONS

More terms from Benoit Cloitre, Sep 08 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 22 22:13 EDT 2022. Contains 353959 sequences. (Running on oeis4.)