Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Apr 07 2019 01:58:41
%S 1,0,2,1,0,5,2,2,0,14,6,4,5,0,42,18,12,10,14,0,132,57,36,30,28,42,0,
%T 429,186,114,90,84,84,132,0,1430,622,372,285,252,252,264,429,0,4862,
%U 2120,1244,930,798,756,792,858,1430,0,16796,7338,4240,3110,2604,2394,2376,2574,2860,4862,0,58786
%N Triangle read by rows: T(n,k) is the number of hill-free Dyck paths of semilength n and having abscissa of first return equal to 2k (2<=k<=n). A hill in a Dyck path is a peak at level 1.
%C Row sums are the Fine numbers (A000957). Column 2 yield the Fine numbers (A000957).
%H G. C. Greubel, <a href="/A114596/b114596.txt">Rows n = 2..100 of triangle, flattened</a>
%H E. Deutsch and L. Shapiro, <a href="https://doi.org/10.1016/S0012-365X(01)00121-2">A survey of the Fine numbers</a>, Discrete Math., 241 (2001), 241-265.
%F T(n,n) = Catalan(n-1) (A000108).
%F Sum_{k=2..n} k*T(n,k) = 2*A014301(n).
%F T(n, k) = Catalan(k-1)*f(n-k), for 2<=k<=n, where Catalan(n) are the Catalan numbers (A000108) and f(n) = 3*Sum_{j=0..floor(n/2)} ( binomial(2n-2j, n) ) - binomial(2n+2, n+1) (the Fine numbers, A000957).
%F G.f.: (2*(1+x-t*x) +sqrt(1-4*x) -sqrt(1-4*t*x))/(1 +2*x +sqrt(1-4*x)) -1.
%e T(5,3)=2 because we have UUUDDD|UUDD and UUDUDD|UUDD, where U=(1,1), D=(1,-1) (first return is shown by a vertical bar).
%e Triangle begins:
%e 1;
%e 0, 2;
%e 1, 0, 5;
%e 2, 2, 0, 14;
%e 6, 4, 5, 0, 42;
%e 18, 12, 10, 14, 0, 132;
%p c:=n->binomial(2*n,n)/(n+1): f:=n->3*sum(binomial(2*n-2*j,n),j=0..floor(n/2))-binomial(2*n+2,n+1): for n from 2 to 12 do seq(c(k-1)*f(n-k),k=2..n) od; # yields sequence in triangular form
%t f[n_]:= 3*Sum[Binomial[2*n-2*j, n], {j,0,Floor[n/2]}] - Binomial[2*n+2, n +1]; Table[CatalanNumber[k-1]*f[n-k], {n,2,12}, {k,2,n}] (* _G. C. Greubel_, Apr 06 2019 *)
%o (PARI) {f(n) = 3*sum(j=0, floor(n/2), binomial(2*n-2*j, n)) - binomial(2*n+2, n+1)};
%o for(n=2,12, for(k=2,n, print1((binomial(2*(k-1),k)/(k-1))*f(n-k), ", "))) \\ _G. C. Greubel_, Apr 06 2019
%o (Sage)
%o @CachedFunction
%o def f(n):
%o return 3*sum(binomial(2*n-2*j, n) for j in (0..floor(n/2))) - binomial(2*n+2, n+1)
%o def T(n,k): return catalan_number(k-1)*f(n-k)
%o [[T(n,k) for k in (2..n)] for n in (2..12)] # _G. C. Greubel_, Apr 06 2019
%Y Cf. A000957, A000108, A014301.
%K nonn,tabl
%O 2,3
%A _Emeric Deutsch_, Dec 12 2005
%E Keyword tabf changed to tabl by _Michel Marcus_, Apr 09 2013