login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114361
Let M(n) be the n X n matrix m(i,j)=min(i,j) for 1<=i,j<=n then a(n) is the trace of M(n)^(-9).
3
1, 5778, 40169, 87727, 136338, 184958, 233578, 282198, 330818, 379438, 428058, 476678, 525298, 573918, 622538, 671158, 719778, 768398, 817018, 865638, 914258, 962878, 1011498, 1060118, 1108738, 1157358, 1205978, 1254598, 1303218, 1351838
OFFSET
1,2
COMMENTS
More generally for any n>=floor((m+1)/2) the trace of M(n)^(-m) = binomial(2*m,m)*n-2^(2*m-1)+binomial(2*m-1,m).
FORMULA
a(n) = 48620n-106762, with n>4, a(1)=1, a(2)=5778, a(3)=40169, a(4)=87727.
From Colin Barker, Mar 18 2012: (Start)
a(n) = 2*a(n-1)-a(n-2) for n>6.
G.f.: x*(1+5776*x+28614*x^2+13167*x^3+1053*x^4+9*x^5)/(1-x)^2. (End)
MATHEMATICA
Rest@ CoefficientList[Series[x (1 + 5776 x + 28614 x^2 + 13167 x^3 + 1053 x^4 + 9 x^5)/(1 - x)^2, {x, 0, 30}], x] (* Michael De Vlieger, Feb 22 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Feb 09 2006
STATUS
approved