|
|
A114361
|
|
Let M(n) be the n X n matrix m(i,j)=min(i,j) for 1<=i,j<=n then a(n) is the trace of M(n)^(-9).
|
|
3
|
|
|
1, 5778, 40169, 87727, 136338, 184958, 233578, 282198, 330818, 379438, 428058, 476678, 525298, 573918, 622538, 671158, 719778, 768398, 817018, 865638, 914258, 962878, 1011498, 1060118, 1108738, 1157358, 1205978, 1254598, 1303218, 1351838
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
More generally for any n>=floor((m+1)/2) the trace of M(n)^(-m) = binomial(2*m,m)*n-2^(2*m-1)+binomial(2*m-1,m).
|
|
LINKS
|
Table of n, a(n) for n=1..30.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
|
|
FORMULA
|
a(n) = 48620n-106762, with n>4, a(1)=1, a(2)=5778, a(3)=40169, a(4)=87727.
From Colin Barker, Mar 18 2012: (Start)
a(n) = 2*a(n-1)-a(n-2) for n>6.
G.f.: x*(1+5776*x+28614*x^2+13167*x^3+1053*x^4+9*x^5)/(1-x)^2. (End)
|
|
MATHEMATICA
|
Rest@ CoefficientList[Series[x (1 + 5776 x + 28614 x^2 + 13167 x^3 + 1053 x^4 + 9 x^5)/(1 - x)^2, {x, 0, 30}], x] (* Michael De Vlieger, Feb 22 2021 *)
|
|
CROSSREFS
|
Cf. A114358, A114359, A114360.
Sequence in context: A031574 A004953 A004973 * A235086 A098476 A248132
Adjacent sequences: A114358 A114359 A114360 * A114362 A114363 A114364
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Benoit Cloitre, Feb 09 2006
|
|
STATUS
|
approved
|
|
|
|