login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let M(n) be the n X n matrix m(i,j)=min(i,j) for 1<=i,j<=n then a(n) is the trace of M(n)^(-9).
3

%I #17 Feb 23 2021 05:26:11

%S 1,5778,40169,87727,136338,184958,233578,282198,330818,379438,428058,

%T 476678,525298,573918,622538,671158,719778,768398,817018,865638,

%U 914258,962878,1011498,1060118,1108738,1157358,1205978,1254598,1303218,1351838

%N Let M(n) be the n X n matrix m(i,j)=min(i,j) for 1<=i,j<=n then a(n) is the trace of M(n)^(-9).

%C More generally for any n>=floor((m+1)/2) the trace of M(n)^(-m) = binomial(2*m,m)*n-2^(2*m-1)+binomial(2*m-1,m).

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).

%F a(n) = 48620n-106762, with n>4, a(1)=1, a(2)=5778, a(3)=40169, a(4)=87727.

%F From _Colin Barker_, Mar 18 2012: (Start)

%F a(n) = 2*a(n-1)-a(n-2) for n>6.

%F G.f.: x*(1+5776*x+28614*x^2+13167*x^3+1053*x^4+9*x^5)/(1-x)^2. (End)

%t Rest@ CoefficientList[Series[x (1 + 5776 x + 28614 x^2 + 13167 x^3 + 1053 x^4 + 9 x^5)/(1 - x)^2, {x, 0, 30}], x] (* _Michael De Vlieger_, Feb 22 2021 *)

%Y Cf. A114358, A114359, A114360.

%K nonn,easy

%O 1,2

%A _Benoit Cloitre_, Feb 09 2006