The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114193 Riordan array (1/(1+2xc(-2x)),xc(-2x)/(1+2xc(-2x)), c(x) the g.f. of A000108. 4
 1, -2, 1, 8, -6, 1, -40, 36, -10, 1, 224, -224, 80, -14, 1, -1344, 1440, -600, 140, -18, 1, 8448, -9504, 4400, -1232, 216, -22, 1, -54912, 64064, -32032, 10192, -2184, 308, -26, 1, 366080, -439296, 232960, -81536, 20160, -3520, 416, -30, 1, -2489344, 3055104, -1697280, 639744, -176256, 35904, -5304, 540, -34, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Row sums are A114191. Diagonal sums are A114194. Inverse of A114192. Triangle T(n,k), read by rows, given by (-2, -2, -2, -2, -2, -2, -2, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 26 2014 LINKS FORMULA Riordan array ((sqrt(1+8x)-1)/(4x), (sqrt(1+8x)-1)^2/(16x)). T(n, k) = (-2)^(n-k)*A039599(n, k) = (-2)^(n-k)*C(2*n, n-k)*(2*k+1)/(n+k+1). - Philippe Deléham, Nov 17 2005 EXAMPLE Triangle begins       1;      -2,    1;       8,   -6,    1;     -40,   36,  -10,   1;     224, -224,   80, -14,   1;   -1344, 1440, -600, 140, -18, 1; MATHEMATICA c[x_] := (1 - Sqrt[1 - 4 x])/(2 x); (* The function RiordanArray is defined in A256893. *) RiordanArray[1/(1 + 2 # c[-2 #])&, # c[-2 #]/(1 + 2 # c[-2 #])&, 10] // Flatten (* Jean-François Alcover, Jul 16 2019 *) CROSSREFS Cf. A039599, A084938. Sequence in context: A008517 A142336 A193735 * A231846 A039683 A318389 Adjacent sequences:  A114190 A114191 A114192 * A114194 A114195 A114196 KEYWORD easy,sign,tabl AUTHOR Paul Barry, Nov 16 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 21:52 EDT 2020. Contains 334671 sequences. (Running on oeis4.)