login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142336
A generalized PolyLog triangular sequence of coefficients: k = (n + 1); b0 = 1; p(x,n,k)=(k - 1)!*(1 - x)^n*PolyLog[ -n, k, x]/(x*Log[1 - x]); t(n,m)=Coefficients(p(b0,n,k)).
0
-1, 1, -2, -1, 8, -6, 1, -24, 57, -24, -1, 64, -361, 424, -120, 1, -160, 1890, -4720, 3415, -720, -1, 384, -8828, 41642, -59543, 30036, -5040, 1, -896, 38199, -317072, 803383, -757120, 288449, -40320, -1, 2048, -156483, 2177996, -9156523, 14586084, -9908113, 3015440, -362880, 1, -4608, 615288
OFFSET
1,3
COMMENTS
Row sums are:
{-1, -1, 1, 10, 6, -294, -1350, 14624, 197568, -703800}.
FORMULA
k = (n + 1); b0 = 1; p(x,n,k)=(k - 1)!*(1 - x)^n*PolyLog[ -n, k, x]/(x*Log[1 - x]); t(n,m)=Coefficients(p(b0,n,k)).
EXAMPLE
{-1},
{1, -2},
{-1, 8, -6},
{1, -24, 57, -24},
{-1, 64, -361, 424, -120},
{1, -160, 1890, -4720, 3415, -720},
{-1, 384, -8828, 41642, -59543, 30036, -5040},
{1, -896, 38199, -317072, 803383, -757120, 288449, -40320},
{-1, 2048, -156483, 2177996, -9156523, 14586084, -9908113, 3015440, -362880},
{1, -4608, 615288, -13863896, 92378100, -234284376, 258773308, -134868288, 34179471, -3628800}
MATHEMATICA
Clear[t, n] k = (n + 1); b0 = 1; t[x_, n_, k_] = (k - 1)!*(1 - x)^n*PolyLog[ -n, k, x]/(x*Log[1 - x]); a = Table[CoefficientList[FullSimplify[Expand[t[x, n, k]]], x], {n, 1, 10}]; a /. x -> 1 - Exp[b0]; Flatten[a /. x -> 1 - Exp[b0]]
CROSSREFS
Sequence in context: A189966 A367177 A008517 * A193735 A114193 A231846
KEYWORD
uned,sign
AUTHOR
STATUS
approved