login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114076
Numbers k such that k * phi(k) is a cube.
3
1, 4, 32, 50, 72, 225, 256, 400, 576, 900, 1944, 2048, 2166, 2312, 2646, 3200, 4107, 4563, 4608, 5202, 6075, 6250, 7200, 7225, 15125, 15552, 16384, 16428, 17328, 18252, 18496, 21168, 23762, 24300, 25600, 28125, 28900, 35378, 36864, 41616, 50000, 52488, 57600
OFFSET
1,2
COMMENTS
From Robert Israel, Sep 06 2020: (Start)
If n > 1 is in the sequence, A071178(n) == 2 (mod 3).
If p=2^(2^k)+1 is in A019434, includes 2^a*p^b where a == 2^k-1 (mod 3) and b == 2 (mod 3).
If members m and n are coprime, then m*n is in the sequence.
If n is in the sequence and prime p divides n, then p^3*n is in the sequence. (End)
To look for terms it suffices to see if cubes have a divisors pair (k, m) such that phi(m) = k. - David A. Corneth, May 21 2024
LINKS
David A. Corneth, Table of n, a(n) for n = 1..8565 (first 300 terms from Robert Israel, terms <= 5*10^11)
David A. Corneth, PARI program
EXAMPLE
phi(1944) * 1944 = 1259712 = 108^3.
MAPLE
filter:= proc(n) local F;
F:= ifactors(n*numtheory:-phi(n))[2];
type(map(t -> t[2]/3, F), list(integer));
end proc:
select(filter, [$1..10^5]); # Robert Israel, Sep 06 2020
MATHEMATICA
Select[Range[57600], IntegerQ[(# EulerPhi[#])^(1/3)]&] (* Stefano Spezia, May 29 2024 *)
PROG
(PARI) isok(n) = ispower(n*eulerphi(n), 3); \\ Michel Marcus, Jan 22 2014
(PARI) upto(n)= res = List(); forfactored(i = 1, n, if(ispower(i[1] * eulerphi(i[2]), 3), listput(res, i[1]); ) ); res \\ David A. Corneth, Dec 08 2022
(PARI) \\ See Corneth link
(Python)
from sympy import integer_nthroot, totient as phi
def ok(k): return integer_nthroot(k * phi(k), 3)[1]
print([k for k in range(1, 60000) if ok(k)]) # Michael S. Branicky, Dec 08 2022
CROSSREFS
Aside from the first term, a subsequence of A070003. A013731 is a subsequence.
Sequence in context: A373287 A373689 A275713 * A078092 A076137 A138340
KEYWORD
nonn
AUTHOR
Giovanni Resta, Feb 13 2006
EXTENSIONS
More terms from Michel Marcus, Jan 22 2014
STATUS
approved