login
A076137
Numbers k such that Omega(k) = Omega(k-1) + Omega(k-2) + Omega(k-3), where Omega(n) denotes the number of prime factors of n, with multiplicity.
3
4, 32, 64, 96, 144, 180, 216, 224, 240, 360, 400, 432, 576, 600, 648, 672, 800, 972, 1008, 1040, 1088, 1104, 1188, 1232, 1260, 1344, 1400, 1404, 1408, 1456, 1500, 1584, 1620, 1624, 1680, 1700, 1764, 1800, 1840, 1880, 1904, 1920, 1980, 2000, 2040, 2064
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 64 is a term because Omega(64) = 6 = Omega(63)+Omega(62)+Omega(61) = 3+2+1 = 6.
MATHEMATICA
l = {4}; Do[If[Omega[n] == Omega[n - 1] + Omega[n - 2] + Omega[n - 3], l = Append[l, n]], {n, 5, 5000}]; l
Transpose[Select[Partition[Range[2100], 4, 1], PrimeOmega[Last[#]] == Total[ PrimeOmega[Take[#, 3]]]&]][[4]] (* Harvey P. Dale, Nov 29 2011 *)
CROSSREFS
Sequence in context: A275713 A114076 A078092 * A138340 A113250 A329910
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Oct 30 2002
STATUS
approved