login
A113766
a(n) is the product of those primes which divide some iterate of the Euler totient function but do not divide n itself.
1
1, 1, 2, 1, 2, 1, 6, 1, 2, 1, 10, 1, 6, 3, 2, 1, 2, 1, 6, 1, 2, 5, 110, 1, 2, 3, 2, 3, 42, 1, 30, 1, 10, 1, 6, 1, 6, 3, 2, 1, 10, 1, 42, 5, 2, 55, 2530, 1, 6, 1, 2, 3, 78, 1, 2, 3, 2, 21, 1218, 1, 30, 15, 2, 1, 6, 5, 330, 1, 110, 3, 210, 1, 6, 3, 2, 3, 30, 1, 78, 1, 2, 5, 410, 1, 2, 21, 14, 5, 110
OFFSET
1,3
COMMENTS
a(n) = product of primes p such that p does not divide n but p divides phi(n)*phi(phi(n))*phi(phi(phi(n)))...
LINKS
Florian Luca and Carl Pomerance, Irreducible radical extensions and Euler-function chains, pp. 351-362 in Combinatorial Number Theory, Landman et al., eds., de Gruyter, 2007 and in Integers, 7(2) (2007), paper A25.
EXAMPLE
E.g. phi(21)=12, phi(12)=4, phi(4)=2, phi(2)=1, so the only candidates are 2 and 3. But 3|21, so a(21)=2.
phi(43)=42, phi(42)=12, etc., so the candidates are 2, 3, 7, none of which divide 43, so a(43)=42.
MATHEMATICA
f[n_] := Times @@ Select[First /@ FactorInteger[Times @@ FixedPointList[ EulerPhi@# &, n]], Mod[n, # ] != 0 &]; Array[f, 90] (* Robert G. Wilson v, Jul 08 2006 *)
PROG
(PARI) a(n)=my(s=n, v=[]~); while(s>1, v=concat(v, factor(s=eulerphi(s))[, 1])); v=setminus(vecsort(v~, , 8), factor(n)[, 1]~); prod(i=1, #v, v[i]) \\ Charles R Greathouse IV, Feb 04 2013
CROSSREFS
Sequence in context: A055770 A225821 A368777 * A204992 A186726 A205405
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, based on an email message from R. K. Guy, Jan 19 2006
EXTENSIONS
Corrected and extended by Robert G. Wilson v, Jul 08 2006
STATUS
approved