OFFSET
1,3
COMMENTS
a(n) = product of primes p such that p does not divide n but p divides phi(n)*phi(phi(n))*phi(phi(phi(n)))...
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
Florian Luca and Carl Pomerance, Irreducible radical extensions and Euler-function chains, pp. 351-362 in Combinatorial Number Theory, Landman et al., eds., de Gruyter, 2007 and in Integers, 7(2) (2007), paper A25.
EXAMPLE
E.g. phi(21)=12, phi(12)=4, phi(4)=2, phi(2)=1, so the only candidates are 2 and 3. But 3|21, so a(21)=2.
phi(43)=42, phi(42)=12, etc., so the candidates are 2, 3, 7, none of which divide 43, so a(43)=42.
MATHEMATICA
f[n_] := Times @@ Select[First /@ FactorInteger[Times @@ FixedPointList[ EulerPhi@# &, n]], Mod[n, # ] != 0 &]; Array[f, 90] (* Robert G. Wilson v, Jul 08 2006 *)
PROG
(PARI) a(n)=my(s=n, v=[]~); while(s>1, v=concat(v, factor(s=eulerphi(s))[, 1])); v=setminus(vecsort(v~, , 8), factor(n)[, 1]~); prod(i=1, #v, v[i]) \\ Charles R Greathouse IV, Feb 04 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, based on an email message from R. K. Guy, Jan 19 2006
EXTENSIONS
Corrected and extended by Robert G. Wilson v, Jul 08 2006
STATUS
approved