OFFSET
1,2
COMMENTS
This sequence is the 5th step in a polygonal-factor sieve, where all integers with k-gonal factors have been eliminated from an initial set of the natural numbers, for k = 3, 4, 5, .... There is no need to specifically sieve out hexagonal numbers, as every hexagonal number is a triangular number and thus is already sieved. Every integer n is sieved out no later than step n-3, as n-gonal number(2) = n (i.e. 7 is eliminated when we sieve out all numbers with heptagonal factors, as 7 = Hep(2); 11 is eliminated when we sieve out all 11-gonal number multiples. After an infinite number of steps, the sequence collapses to {1,2}. If, instead, at each step we eliminate all multiples of n-gonal numbers except {1, n} then the sequence converges on {1,4} UNION {primes}.
LINKS
FORMULA
a(n) has no factor >1 of form b*(b+1)/2, c^2, d*(3*d-1)/2, nor e*(5*e-3)/2.
MAPLE
isA000217 := proc(n) local discr ; discr := 1+8*n ; if issqr(discr) then if ( sqrt(discr)-1 ) mod 2 = 0 then true; else false ; fi ; else false ; fi ; end: isA000326 := proc(n) local discr ; discr := 1+24*n ; if issqr(discr) then if ( sqrt(discr)+1 ) mod 6 = 0 then true; else false ; fi ; else false ; fi ; end: isA000566 := proc(n) local discr ; discr := 9+40*n ; if issqr(discr) then if ( sqrt(discr)+3 ) mod 10 = 0 then true; else false ; fi ; else false ; fi ; end: isA000290 := proc(n) issqr(n) ; end: isA113626 := proc(n) local d ; for d in numtheory[divisors](n) do if d > 1 then if isA000217(d) or isA000290(d) or isA000326(d) or isA000566(d) then RETURN(false) ; fi ; fi ; od: RETURN(true) ; end: for n from 1 to 500 do if isA113626(n) then printf("%d, ", n) ; fi ; od: # R. J. Mathar, Apr 19 2008
MATHEMATICA
The Mathematica function SquareFreeQ[n] in the Mathematica add-on package NumberTheory`NumberTheoryFunctions` (which can be loaded with the command <<NumberTheory`) determines whether a number is squarefree.
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jan 14 2006
EXTENSIONS
More terms from R. J. Mathar, Apr 19 2008
Extended by R. J. Mathar, Jul 24 2009
STATUS
approved