login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers simultaneously heptagon-free, pentagon-free, squarefree and triangle-free.
0

%I #8 Aug 09 2015 00:30:02

%S 1,2,11,13,17,19,23,26,29,31,37,38,41,43,46,47,53,58,59,61,62,67,71,

%T 73,74,79,82,83,86,89,94,97,101,103,106,107,109,113,118,122,127,131,

%U 134,137,139,142,143,146,149,151,157,158,163,166,167,173,178,179,181,187

%N Numbers simultaneously heptagon-free, pentagon-free, squarefree and triangle-free.

%C This sequence is the 5th step in a polygonal-factor sieve, where all integers with k-gonal factors have been eliminated from an initial set of the natural numbers, for k = 3, 4, 5, .... There is no need to specifically sieve out hexagonal numbers, as every hexagonal number is a triangular number and thus is already sieved. Every integer n is sieved out no later than step n-3, as n-gonal number(2) = n (i.e. 7 is eliminated when we sieve out all numbers with heptagonal factors, as 7 = Hep(2); 11 is eliminated when we sieve out all 11-gonal number multiples. After an infinite number of steps, the sequence collapses to {1,2}. If, instead, at each step we eliminate all multiples of n-gonal numbers except {1, n} then the sequence converges on {1,4} UNION {primes}.

%H J. V. Post, <a href="http://www.magicdragon.com/poly.html">Table of Polytope Numbers, Sorted, Through 1,000,000.</a>

%F a(n) has no factor >1 of form b*(b+1)/2, c^2, d*(3*d-1)/2, nor e*(5*e-3)/2.

%F A113544 INTERSECT A113619. - _R. J. Mathar_, Jul 24 2009

%p isA000217 := proc(n) local discr ; discr := 1+8*n ; if issqr(discr) then if ( sqrt(discr)-1 ) mod 2 = 0 then true; else false ; fi ; else false ; fi ; end: isA000326 := proc(n) local discr ; discr := 1+24*n ; if issqr(discr) then if ( sqrt(discr)+1 ) mod 6 = 0 then true; else false ; fi ; else false ; fi ; end: isA000566 := proc(n) local discr ; discr := 9+40*n ; if issqr(discr) then if ( sqrt(discr)+3 ) mod 10 = 0 then true; else false ; fi ; else false ; fi ; end: isA000290 := proc(n) issqr(n) ; end: isA113626 := proc(n) local d ; for d in numtheory[divisors](n) do if d > 1 then if isA000217(d) or isA000290(d) or isA000326(d) or isA000566(d) then RETURN(false) ; fi ; fi ; od: RETURN(true) ; end: for n from 1 to 500 do if isA113626(n) then printf("%d,",n) ; fi ; od: # _R. J. Mathar_, Apr 19 2008

%t The Mathematica function SquareFreeQ[n] in the Mathematica add-on package NumberTheory`NumberTheoryFunctions` (which can be loaded with the command <<NumberTheory`) determines whether a number is squarefree.

%Y Cf. A000217, A000566, A005117, A113502, A013929, A046098, A059956, A065474, A071172, A087618, A088454, A112886, A113508.

%K easy,nonn

%O 1,2

%A _Jonathan Vos Post_, Jan 14 2006

%E More terms from _R. J. Mathar_, Apr 19 2008

%E Extended by _R. J. Mathar_, Jul 24 2009