login
A113471
Lucas(k)/(3k) for k = 2*3^n, where Lucas(k) is k-th Lucas number (A000032).
0
1, 107, 1190741689, 14769352340699478579719327005523, 253650450218391594062880777243777017638488805917392303113120204411172926964476779033181303378188721
OFFSET
1,2
COMMENTS
a(n) divides a(n+1). a(n+1)/a(n) = {107, 11128427, 12403489755282666163307, 17174107866559209832245996776509546318861182768126017871860347845227, ...}. a(n+1)/a(n) is prime for n = {1, 2, 4}.
FORMULA
a(n) = ( Fibonacci[ 2*3^n - 1 ] + Fibonacci[ 2*3^n + 1 ] ) / ( 2*3^(n+1) ). a(n) = A000032[ 2*3^n ] / ( 2*3^(n+1) ).
MATHEMATICA
Table[ ( Fibonacci[ 2*3^n - 1 ] + Fibonacci[ 2*3^n + 1 ] ) / ( 2*3^(n+1) ), {n, 1, 5} ]
CROSSREFS
Cf. A000032, A016089 = numbers n such that n divides n-th Lucas number. Cf. A128935 = Fibonacci(5^n) / 5^n.
Sequence in context: A160488 A158476 A145045 * A057388 A192071 A025601
KEYWORD
nonn
AUTHOR
_Alexander Adamchuk_, May 13 2007
STATUS
approved