login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113471
Lucas(k)/(3k) for k = 2*3^n, where Lucas(k) is k-th Lucas number (A000032).
0
1, 107, 1190741689, 14769352340699478579719327005523, 253650450218391594062880777243777017638488805917392303113120204411172926964476779033181303378188721
OFFSET
1,2
COMMENTS
a(n) divides a(n+1). a(n+1)/a(n) = {107, 11128427, 12403489755282666163307, 17174107866559209832245996776509546318861182768126017871860347845227, ...}. a(n+1)/a(n) is prime for n = {1, 2, 4}.
FORMULA
a(n) = ( Fibonacci[ 2*3^n - 1 ] + Fibonacci[ 2*3^n + 1 ] ) / ( 2*3^(n+1) ). a(n) = A000032[ 2*3^n ] / ( 2*3^(n+1) ).
MATHEMATICA
Table[ ( Fibonacci[ 2*3^n - 1 ] + Fibonacci[ 2*3^n + 1 ] ) / ( 2*3^(n+1) ), {n, 1, 5} ]
CROSSREFS
Cf. A000032, A016089 = numbers n such that n divides n-th Lucas number. Cf. A128935 = Fibonacci(5^n) / 5^n.
Sequence in context: A160488 A158476 A145045 * A057388 A192071 A025601
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, May 13 2007
STATUS
approved