login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Lucas(k)/(3k) for k = 2*3^n, where Lucas(k) is k-th Lucas number (A000032).
0

%I #5 Mar 31 2012 13:20:25

%S 1,107,1190741689,14769352340699478579719327005523,

%T 253650450218391594062880777243777017638488805917392303113120204411172926964476779033181303378188721

%N Lucas(k)/(3k) for k = 2*3^n, where Lucas(k) is k-th Lucas number (A000032).

%C a(n) divides a(n+1). a(n+1)/a(n) = {107, 11128427, 12403489755282666163307, 17174107866559209832245996776509546318861182768126017871860347845227, ...}. a(n+1)/a(n) is prime for n = {1, 2, 4}.

%F a(n) = ( Fibonacci[ 2*3^n - 1 ] + Fibonacci[ 2*3^n + 1 ] ) / ( 2*3^(n+1) ). a(n) = A000032[ 2*3^n ] / ( 2*3^(n+1) ).

%t Table[ ( Fibonacci[ 2*3^n - 1 ] + Fibonacci[ 2*3^n + 1 ] ) / ( 2*3^(n+1) ), {n,1,5} ]

%Y Cf. A000032, A016089 = numbers n such that n divides n-th Lucas number. Cf. A128935 = Fibonacci(5^n) / 5^n.

%K nonn

%O 1,2

%A _Alexander Adamchuk_, May 13 2007