login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113133
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 6.
6
1, 1, 6, 72, 1332, 33264, 1040256, 38926656, 1692061488, 83688313536, 4638320578944, 284692939944192, 19169186341398912, 1404935464314299904, 111348880778746460160, 9489756817594314049536, 865470841829802331976448
OFFSET
0,3
FORMULA
a(n+1) = Sum{k, 0<=k<=n} 6^k*A113129(n, k).
G.f.: A(x) = x/series_reversion(x*G(x)) where G(x) = g.f. of sextuple factorial numbers (A008542).
G.f. satisfies: A(x*G(x)) = G(x) = g.f. of sextuple factorial numbers (A008542).
EXAMPLE
a(2) = 6.
a(3) = 2*6^2 = 72.
a(4) = 6*3*72 + 1*6*6 = 1332.
a(5) = 6*4*1332 + 1*6*72 + 2*72*6 = 33264.
a(6) = 6*5*33264 + 1*6*1332 + 2*72*72 + 3*1332*6 = 1040256.
G.f.: A(x) = 1 + x + 6*x^2 + 72*x^3 + 1332*x^4 + 33264*x^5
+...
= x/series_reversion(x + x^2 + 7*x^3 + 91*x^4 + 1729*x^5
+...).
MATHEMATICA
x=6; a[0]=a[1]=1; a[2]=x; a[3]=2x^2; a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}]; Table[a[n], {n, 0, 17}](Robert G. Wilson v)
PROG
(PARI) a(n)=Vec(x/serreverse(x*Ser(vector(n+1, k, if(k==1, 1, prod(j=0, k-2, 6*j+1))))))[n+1]
(PARI) a(n, x=6)=if(n<0, 0, if(n==0 || n==1, 1, if(n==2, x, if(n==3, 2*x^2, x*(n-1)*a(n-1)+sum(j=2, n-2, (j-1)*a(j)*a(n-j))))))
CROSSREFS
Cf. A008542, A075834(x=1), A111088(x=2), A113130(x=3), A113131(x=4), A113132(x=5), A113134(x=7), A113135(x=8).
Sequence in context: A266869 A001763 A003235 * A302355 A089252 A052730
KEYWORD
nonn,changed
AUTHOR
STATUS
approved