login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113131
a(0) = a(1) = 1, a(2) = x, a(3) = 2x^2, a(n) = x*(n-1)*a(n-1) + Sum_{j=2..n-2} (j-1)*a(j)*a(n-j), n>=4 and for x = 4.
6
1, 1, 4, 32, 400, 6784, 144128, 3658752, 107686656, 3599697920, 134617038848, 5567255822336, 252278661832704, 12431395516383232, 661885541595873280, 37869659304097218560, 2317293119684500193280, 151022143036329696952320
OFFSET
0,3
FORMULA
a(n+1) = Sum{k, 0<=k<=n} 4^k*A113129(n, k).
G.f.: A(x) = x/series_reversion(x*G(x)) where G(x) = g.f. of quartic factorials (A007696).
G.f. satisfies: A(x*G(x)) = G(x) = g.f. of triple factorials (A007696).
EXAMPLE
a(2) = 4.
a(3) = 2*4^2 = 32.
a(4) = 4*3*32 + 1*4*4 = 400.
a(5) = 4*4*400 + 1*4*32 + 2*32*4 = 6784.
a(6) = 4*5*6784 + 1*4*400 + 2*32*32 + 3*400*4 = 144128.
G.f.: A(x) = 1 + x + 4*x^2 + 32*x^3 + 400*x^4 + 6784*x^5 +...
= x/series_reversion(x + x^2 + 5*x^3 + 45*x^4 + 585*x^5 +...).
MATHEMATICA
x=4; a[0]=a[1]=1; a[2]=x; a[3]=2x^2; a[n_]:=a[n]=x*(n-1)*a[n-1]+Sum[(j-1)*a[j ]*a[n-j], {j, 2, n-2}]; Table[a[n], {n, 0, 18}](Robert G. Wilson v)
PROG
(PARI) a(n)=Vec(x/serreverse(x*Ser(vector(n+1, k, if(k==1, 1, prod(j=0, k-2, 4*j+1))))))[n+1]
(PARI) a(n, x=4)=if(n<0, 0, if(n==0 || n==1, 1, if(n==2, x, if(n==3, 2*x^2, x*(n-1)*a(n-1)+sum(j=2, n-2, (j-1)*a(j)*a(n-j))))))
CROSSREFS
Cf. A007696, A075834(x=1), A111088(x=2), A113130(x=3), A113132(x=5), A113133(x=6), A113134(x=7), A113135(x=8).
Sequence in context: A005263 A325574 A373027 * A367376 A195762 A127670
KEYWORD
nonn,changed
AUTHOR
STATUS
approved