login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112866
If a(n-1) is the i-th Fibonacci number then a(n)=Fibonacci(i+a(n-2)); with a(1)=1, a(2)=2 and where we use the following nonstandard indexing for the Fibonacci numbers: f(n)=f(n-1)+f(n-2), f(1)=1, f(2)=2 (cf. A000045).
3
1, 2, 3, 8, 34, 1597, 20365011074
OFFSET
1,2
COMMENTS
The next term has 345 digits and is not displayed here.
EXAMPLE
a(5)=Fibonacci(5+3)=34 because a(4) is the 5th Fibonacci number and a(3)=3.
MAPLE
f := proc(n)
combinat[fibonacci](n+1) ;
end proc:
Fidx := proc(n)
for i from 1 do
if f(i) = n then
return i;
elif f(i) > n then
return -1 ;
end if;
end do:
end proc:
A112866 := proc(n)
option remember;
if n<= 2 then
n;
else
i := Fidx(procname(n-1)) ;
f( i+procname(n-2)) ;
end if:
end proc: # R. J. Mathar, Nov 26 2011
MATHEMATICA
f[n_] := Fibonacci[n+1];
Fidx[n_] := For[i = 1, True, i++, If[f[i] == n, Return[i], If[f[i] > n, Return[-1]]]];
a[n_] := a[n] = If[n <= 2, n, i = Fidx[a[n-1]]; f[i+a[n-2]]];
Table[a[n], {n, 1, 7}] (* Jean-François Alcover, Oct 26 2023, after R. J. Mathar *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Yasutoshi Kohmoto, Dec 25 2005
STATUS
approved