login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A078742
a(n) = smallest Fibonacci number > a(n-1) such that a(1) + ... + a(n) is prime.
1
2, 3, 8, 34, 144, 46368, 8944394323791464, 16641027750620563662096, 298611126818977066918552, 146178119651438213260386312206974243796773058, 1065113236465588309403889415460645093083860991848425732542338227915288346612042420944981983005010603735148681490199640832
OFFSET
1,1
COMMENTS
a(12) to a(17) are approximately 3.132021800*10^349, 1.533208298*10^370, 8.068341610*10^400, 1.144126295*10^609, 1.293644115*10^4898, 1.000900690*10^5142 respectively. - Robert Israel, May 20 2014
FORMULA
a(n) = A000045(A078743(n)). Robert Israel, May 20 2014
EXAMPLE
a(1)=2, the smallest Fibonacci number to be prime. The smallest Fibonacci number >2 that yields a prime when added to 2 is 3, so a(2)=3. The smallest Fibonacci number > 3 that yields a prime when added to 2+3 is 8 so a(3)=8.
MAPLE
N:= 14; # to get the first N terms
fib:= combinat[fibonacci]:
a[1]:= 3: s:= fib(3): count:= 1:
for i from 4 while count < N do
if isprime(s+fib(i)) then
count:= count+1;
a[count]:= i;
s:= s + fib(i);
fi
od:
seq(fib(a[i]), i=1..N); # Robert Israel, May 20 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Neil Fernandez, Dec 21 2002
EXTENSIONS
More terms from Robert Israel, May 20 2014
STATUS
approved