OFFSET
1,1
COMMENTS
a(12) to a(17) are approximately 3.132021800*10^349, 1.533208298*10^370, 8.068341610*10^400, 1.144126295*10^609, 1.293644115*10^4898, 1.000900690*10^5142 respectively. - Robert Israel, May 20 2014
FORMULA
EXAMPLE
a(1)=2, the smallest Fibonacci number to be prime. The smallest Fibonacci number >2 that yields a prime when added to 2 is 3, so a(2)=3. The smallest Fibonacci number > 3 that yields a prime when added to 2+3 is 8 so a(3)=8.
MAPLE
N:= 14; # to get the first N terms
fib:= combinat[fibonacci]:
a[1]:= 3: s:= fib(3): count:= 1:
for i from 4 while count < N do
if isprime(s+fib(i)) then
count:= count+1;
a[count]:= i;
s:= s + fib(i);
fi
od:
seq(fib(a[i]), i=1..N); # Robert Israel, May 20 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Neil Fernandez, Dec 21 2002
EXTENSIONS
More terms from Robert Israel, May 20 2014
STATUS
approved