login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A112789
Primes such that the sum of the predecessor and successor primes is divisible by 11.
15
31, 43, 67, 109, 131, 139, 191, 617, 727, 881, 911, 937, 953, 991, 1049, 1289, 1381, 1429, 1543, 1571, 1619, 1657, 1693, 1721, 1723, 1777, 1783, 1871, 1979, 2251, 2311, 2341, 2377, 2441, 2531, 2579, 2837, 2953, 3061, 3221, 3257, 3557, 3559, 3631, 3673
OFFSET
1,1
FORMULA
a(n) = prime(i) is in this sequence iff prime(i-1)+prime(i+1) = 0 mod 11. a(n) = A000040(i) is in this sequence iff A000040(i-1)+A000040(i+1) = 0 mod 11.
EXAMPLE
a(1) = 31 because prevprime(31) + nextprime(31) = 29 + 37 = 66 = 11 * 6.
a(2) = 43 because prevprime(43) + nextprime(43) = 41 + 47 = 88 = 11 * 8.
a(3) = 67 because prevprime(67) + nextprime(67) = 61 + 71 = 132 = 11 * 12.
a(4) = 109 because prevprime(109) + nextprime(109) = 107 + 113 = 220 = 11 * 20.
MATHEMATICA
Prime@ Select[Range[2, 515], Mod[Prime[ # - 1] + Prime[ # + 1], 11] == 0 &] (* Robert G. Wilson v *)
Transpose[Select[Partition[Prime[Range[550]], 3, 1], Divisible[First[#]+ Last[#], 11]&]][[2]] (* Harvey P. Dale, Jul 22 2011 *)
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jan 01 2006
EXTENSIONS
More terms from Robert G. Wilson v, Jan 05 2006
STATUS
approved