OFFSET
0,8
COMMENTS
Diagonal sums are aerated Pell numbers.
LINKS
G. C. Greubel, Rows n = 0..50 of the triangle, flattened
FORMULA
Riordan array (1/(1-x^2), x*(1+x^2)/(1-x^2)).
T(n,k) = Sum_{j=0..k} (1+(-1)^(n-k))*binomial(k,j)*binomial((n-k)/2,j)*2^(j-1).
Sum_{k=0..n} T(n, k) = A000073(n).
T(n,k) = T(n-1,k-1) + T(n-2,k) + T(n-3,k-1). - Philippe Deléham, Mar 11 2013
EXAMPLE
Rows begin
1;
0, 1;
1, 0, 1;
0, 3, 0, 1;
1, 0, 5, 0, 1;
0, 5, 0, 7, 0, 1;
1, 0, 13, 0, 9, 0, 1;
0, 7, 0, 25, 0, 11, 0, 1;
1, 0, 25, 0, 41, 0, 13, 0, 1;
MATHEMATICA
A008288[n_, k_]:= Hypergeometric2F1[-n, -k, 1, 2];
T[n_, k_]:= T[n, k]= (1+(-1)^(n-k))*A008288[(n-k)/2, k]/2;
Table[T[n, k], {n, 0, 14}, {k, 0, n}]//Flatten (* G. C. Greubel, Nov 20 2021 *)
PROG
(Magma)
function T(n, k)
if k lt 0 or k gt n then return 0;
elif k eq n then return 1;
elif k eq 0 then return (1+(-1)^n)/2;
else return T(n-1, k-1) + T(n-2, k) + T(n-3, k-1);
end if;
return T;
end function;
[T(n, k): k in [0..n], n in [0..14]]; // G. C. Greubel, Nov 20 2021
(Sage)
def A008288(n, k): return simplify( hypergeometric([-n, -k], [1], 2) )
flatten([[A112743(n, k) for k in (0..n)] for n in (0..14)]) # G. C. Greubel, Nov 20 2021
CROSSREFS
KEYWORD
AUTHOR
Paul Barry, Sep 17 2005
STATUS
approved