login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112658
Dean's Word: Omega 2,1: the trajectory of 0 -> 01, 1 -> 21, 2 -> 03, 3 -> 23.
5
0, 1, 2, 1, 0, 3, 2, 1, 0, 1, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 0, 3, 2, 1, 0, 1, 2, 3, 0, 3, 2, 3, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 0, 3, 2, 1, 0, 1, 2, 3, 0, 3, 2, 1, 0, 1, 2, 1, 0, 3, 2, 3, 0, 1, 2, 3, 0, 3, 2, 3, 0, 1, 2, 1, 0, 3, 2, 1, 0
OFFSET
1,3
COMMENTS
Even-indexed terms of this sequence are the sequence A099545. - Alexandre Wajnberg, Jan 02 2006
Fractal sequence: odd terms are 0, 2, 0, 2,...; the subsets formed with the terms of index (2^i)n, with i>0, are identical: a(2n)=a(4n)=a(8n)=a(16n)=... - Alexandre Wajnberg, Jan 02 2006
LINKS
J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11. See page 6.
J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11. See page 6. [Local copy]
Kirby A. Baker, George F. McNulty, Walter Taylor, Growth Problems For Avoidable Words, Theoretical Computer Science, volume 69, number 3, 1989, pages 319-345. (See morphism start of section 3, page 325.)
Richard A. Dean, A sequence without repeats on x, ..., Amer. Math. Monthly 72, 1965. pp. 383-385. MR 31 #350.
George F. McNulty, Avoidable Words, conference slides, 2003, slides 38-39. (Also conference abstract.)
FORMULA
It should be easy to prove that a(4n) = 0, a(4n+2) = 2, a(8n+1) = 1, a(8n+5) = 3, a(4n+3) = a(2n+1). This would imply that a(2n) = 2(n mod 2), a(2n+1) = 1 + 2*A014707(n), with A014707(n) the classical paperfolding curve. - Ralf Stephan, Dec 28 2005
EXAMPLE
The first few iterations of the morphism, starting with 0:
Start: 0
Rules:
0 --> 01
1 --> 21
2 --> 03
3 --> 23
-------------
0: (#=1)
0
1: (#=2)
01
2: (#=4)
0121
3: (#=8)
01210321
4: (#=16)
0121032101230321
5: (#=32)
01210321012303210121032301230321
6: (#=64)
0121032101230321012103230123032101210321012303230121032301230321
/* Joerg Arndt, Jul 18 2012 */
MATHEMATICA
Nest[ Flatten[ # /. {0 -> {0, 1}, 1 -> {2, 1}, 2 -> {0, 3}, 3 -> {2, 3}}] &, {0}, 7] (* Robert G. Wilson v, Dec 27 2005 *)
PROG
(PARI) a(n) = 2*bittest(n, valuation(n, 2)+1) + !(n%2); \\ Kevin Ryde, Sep 09 2020
CROSSREFS
Essentially the same: A343180, also A122002 (map 0123 -> 1537), A125047 (map 0123 -> 2134).
Cf. A003324.
Sequence in context: A177351 A117901 A074984 * A190693 A257571 A219649
KEYWORD
nonn
AUTHOR
Jeremy Gardiner, Dec 27 2005
STATUS
approved