login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112107
G.f. A(x) satisfies A(A(A(x))) = B(x) (3rd self-COMPOSE of A) such that the coefficients of B(x) consist only of numbers {1,2,3}, with B(0) = 0.
3
1, 1, -1, 3, -10, 35, -119, 360, -792, -33, 12779, -82525, 305861, -552011, -126321, -8385020, 138177591, -433073834, -5366414982, 51203452090, 123835509276, -4174647911014, 5274854624423, 373574363131841, -2054088594386738, -34047892948849106, 391005463740951942
OFFSET
1,4
EXAMPLE
A(x) = x + x^2 - x^3 + 3*x^4 - 10*x^5 + 35*x^6 - 119*x^7 + ...
where A(A(A(x))) = x + 3*x^2 + 3*x^3 + 3*x^4 + 2*x^5 + ...
is the g.f. of A112106.
PROG
(PARI) {a(n, m=3)=local(F=x+x^2+x*O(x^n), G); if(n<1, 0, for(k=3, n, G=F+x*O(x^k); for(i=1, m-1, G=subst(F, x, G)); F=F-((polcoeff(G, k)-1)\m)*x^k); return(polcoeff(F, n, x)))}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Aug 27 2005
STATUS
approved