login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A112106
Unique sequence of numbers {1,2,3} where g.f. A(x) satisfies A(x) = B(B(B(x))) (3rd self-COMPOSE) such that B(x) is an integer series, with A(0) = 0.
3
1, 3, 3, 3, 2, 2, 1, 2, 1, 3, 1, 1, 3, 3, 3, 2, 3, 3, 2, 2, 2, 1, 2, 2, 3, 1, 2, 1, 1, 2, 3, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 1, 1, 1, 1, 2, 3, 2, 1, 2, 3, 2, 3, 2, 2, 3, 2, 3, 3, 2, 3, 3, 3, 1, 3, 2, 1, 3, 2, 2, 1, 2, 3, 1, 3, 1, 3, 1, 1, 1, 3, 1, 2, 3, 3, 3, 3, 3, 3, 1, 1, 2, 2, 3, 3, 1, 3, 2, 1, 2, 2, 1, 1, 3, 1
OFFSET
1,2
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 3*x^3 + 3*x^4 + 2*x^5 + 2*x^6 + ...
then A(x) = B(B(B(x))) where
B(x) = x + x^2 - x^3 + 3*x^4 - 10*x^5 + 35*x^6 - 119*x^7 + ...
is the g.f. of A112107.
PROG
(PARI) {a(n, m=3)=local(F=x+x^2+x*O(x^n), G); if(n<1, 0, for(k=3, n, G=F+x*O(x^k); for(i=1, m-1, G=subst(F, x, G)); F=F-((polcoeff(G, k)-1)\m)*x^k); G=F+x*O(x^n); for(i=1, m-1, G=subst(F, x, G)); return(polcoeff(G, n, x)))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Aug 27 2005
STATUS
approved