login
A086139
Let p = A046133(n), that is, let p run through the list of primes such that p+12 is also prime (A046133); a(n) = number of primes in the interval p + 1 through p + 11 inclusive.
2
3, 3, 3, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 3, 3, 2, 1, 1, 1, 1, 1, 1, 0, 0, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 0, 2, 2, 2, 2, 0, 1, 2, 1, 2, 0, 1, 3, 2, 0, 0, 0, 1, 1, 1, 2, 2
OFFSET
1,1
COMMENTS
From Michael De Vlieger, Jul 30 2017: (Start)
a(n) = 0 for n = {24, 25, 44, 48, 53, 57, 62, 70, 82, 84, 89, 94, ...}.
a(n) = 1 for n = {9, 14, 18, 19, 20, 21, 22, 23, 28, 29, 30, 33, ...}.
a(n) = 2 for n = {4, 5, 6, 7, 8, 10, 11, 12, 13, 17, 26, 27, 31, ...}.
a(n) = 3 for n = {1, 2, 3, 15, 16, 96, 118, 183, 266, 570, 581, ...}.
(End)
LINKS
EXAMPLE
For n=1, we have p=5, the primes between 5 and 5+12=17 are 7,11,13, so a(1)=3.
MAPLE
a:=[]; b:=[];
for n from 1 to 200 do if isprime(ithprime(n)+12) then
a:=[op(a), ithprime(n)];
c:=0;
for i from 1 to 11 do if isprime(ithprime(n)+i) then c:=c+1; fi; od;
b:=[op(b), c];
fi;
od:
a; # A046133b; # this sequence
MATHEMATICA
cp[x_, y_] := Count[Table[PrimeQ[i], {i, x, y}], True]; d = 12; Do[s = Prime[n]; If[PrimeQ[s+d], Print[cp[s+1, s+d-1]]], {n, 1, 1000}]
(* Second program: *)
With[{d = 12}, DeleteCases[#, -1] &@ Table[Function[p, If[PrimeQ[p + d],
Count[Range[p + 1, p + d - 1], _?PrimeQ], -1] ]@ Prime@ n, {n, 252}]]
PrimePi[#+11]-PrimePi[#+1]&/@Select[Prime[Range[400]], PrimeQ[#+12]&] (* Harvey P. Dale, Jul 30 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 29 2003
EXTENSIONS
Definition edited by N. J. A. Sloane, Aug 05 2017 following analysis by Michael De Vlieger, Jul 30 2017
STATUS
approved