login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A112110 Unique sequence of numbers {1,2,3,4,5} where g.f. A(x) satisfies A(x) = B(B(B(B(B(x))))) (5th self-COMPOSE) such that B(x) is an integer series, with A(0) = 0. 3
1, 5, 5, 5, 5, 5, 4, 4, 4, 4, 3, 1, 1, 1, 5, 3, 1, 1, 5, 3, 4, 3, 2, 1, 5, 4, 1, 4, 1, 5, 1, 4, 5, 4, 2, 1, 5, 2, 5, 4, 5, 5, 4, 1, 1, 5, 4, 3, 5, 1, 5, 2, 2, 3, 1, 3, 2, 5, 2, 5, 3, 2, 3, 5, 2, 1, 2, 3, 1, 5, 1, 4, 5, 4, 3, 3, 2, 4, 2, 3, 4, 5, 2, 5, 5, 2, 4, 2, 3, 5, 3, 2, 4, 2, 2, 1, 1, 2, 3, 4, 5, 3, 3, 1, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Table of n, a(n) for n=1..105.

EXAMPLE

G.f.: A(x) = x + 5*x^2 + 5*x^3 + 5*x^4 + 5*x^5 + 5*x^6 +...

then A(x) = B(B(B(B(B(x))))) where

B(x) = x + x^2 - 3*x^3 + 17*x^4 - 115*x^5 + 841*x^6 +...

is the g.f. of A112111.

PROG

(PARI) {a(n, m=5)=local(F=x+x^2+x*O(x^n), G); if(n<1, 0, for(k=3, n, G=F+x*O(x^k); for(i=1, m-1, G=subst(F, x, G)); F=F-((polcoeff(G, k)-1)\m)*x^k); G=F+x*O(x^n); for(i=1, m-1, G=subst(F, x, G)); return(polcoeff(G, n, x)))}

CROSSREFS

Cf. A112111, A112104-A112109, A112112-A112127.

Sequence in context: A271509 A269626 A269268 * A142864 A098598 A010716

Adjacent sequences:  A112107 A112108 A112109 * A112111 A112112 A112113

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Aug 27 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 19 10:31 EST 2018. Contains 299330 sequences. (Running on oeis4.)